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ABSTRACT

Li, Yanjun. Ph.D., Department of Computer Science and Engineering, Wright
State University, 2007. High Performance Text Document Clustering.

Data mining, also known as knowledge discovery in database (KDD), is the process to

discover interesting unknown knowledge from a large amount of data. Text mining is to apply

data mining techniques to extract interesting and nontrivial information and knowledge from

unstructured text. Text clustering is one of important techniques of text mining, which is

the unsupervised classification of similar documents into different groups.

This research focuses on improving the performance of text clustering. We investigated

the text clustering algorithms in four aspects: document representation, documents closeness

measurement, high dimension reduction and parallelization. We propose a group of high per-

formance text clustering algorithms, which target the unique characteristics of unstructured

text database.

First, two new text clustering algorithms are proposed. Unlike the vector space model,

which treats document as a bag of words, we use a document representation which keeps

the sequential relationship between words in the documents. In these two algorithms, the

dimension of the database is reduced by considering the frequent word (meaning) sequences,

and the closeness of two documents is measured based on the sharing of frequent word

(meaning) sequences.

Second, a text clustering algorithm with feature selection is proposed. This algorithm

gradually reduces the high dimension of database by performing feature selection during the

clustering. The new feature selection method applied is based on the well-known χ2 statis-

tic and a new statistical data which can measure the positive and negative term-category

dependence.

Third, a group of new text clustering algorithms is developed based on the k-means

algorithm. Instead of using the cosine function, a new function involving global information
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is proposed to measure the closeness between two documents. This new function utilizes the

neighbor matrix introduced in [26]. A new method for selecting initial centroids and a new

heuristic function for selecting a cluster to split are adopted in the proposed algorithms.

Last, a new parallel algorithm for bisecting k-means is proposed for the message-passing

multiprocessor systems. This new algorithm, named PBKP, fully utilizes the data-parallelism

of the bisecting k-means algorithm, and adopts a prediction step to balance the workloads

of multiple processors to achieve a high speedup.

Comprehensive performance studies were conducted on all the proposed algorithms. In

order to evaluate the performance of these algorithms, we compared them with existing

text clustering algorithms, such as k-means, bisecting k-means [59] and FIHC [21]. The

experimental results show that our clustering algorithms are scalable and have much better

clustering accuracy than existing algorithms. For the parallel PBKP algorithm, we tested it

on a 9-node Linux cluster system and analyzed its performance. The experimental results

suggest that the speedup of PBKP is linear with the number of processors and data points.

Moreover, PBKP scales up better than the parallel k-means with respect to the desired

number of clusters.
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Chapter 1

Introduction

1.1 Text Clustering

Data mining can be defined as the nontrivial extraction of implicit, previously unknown,

and potentially useful information from data [18]. Generally, data mining is the process

of analyzing data from different perspectives and summarizing it into useful information.

Technically, data mining is the process of finding correlations or patterns among dozens of

fields in large databases. Data could be any facts, numbers, or text that can be processed

by a computer. Text Mining is the discovery of new, previously unknown information by

automatically extracting information from text documents.

Data clustering is one of important techniques of data mining, which is the unsupervised

classification of similar data objects into different groups, or more precisely, the partitioning

of a data set into subsets (clusters), so that the data in each subset share some common

trait according to some defined distance measure. Text clustering is the organization of a

collection of text documents into clusters based on similarity. Intuitively, documents within

a valid cluster are more similar to each other than those belonging to a different cluster. In

other words, documents in one cluster share similar topics.

It is important to understand the difference between clustering and classification. In clas-

sification, we are provided with a collection of pre-classified training data, and the problem is

to label a newly encountered unlabeled data. Typically, the given labled data (training data)

are used to learn the descriptions of classes, which in turn are used to label new data. In the
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case of clustering, the problem is to group a given collection of unlabeled data into meaning-

ful clusters. Since clustering needs little prior information about the data than classification,

it could be applied in many situations that classification could not be performed.

Typical text clustering activity involves the following steps [30]:

• document representation (optionally including feature extraction and/or selection).

• definition of a document similarity measure.

• clustering or grouping.

 
 

Feature 
Selection/ 
Extraction 

Document 
Similarity 
Measure 

 
  Grouping 

Document 
Representation 

Documents Clusters 

Feedback Loop 

Figure 1.1: Stages in Text Clustering

Figure 1.1 shows a typical sequencing of these three steps, including a feedback path

where the grouping process output could affect subsequent feature selection/extraction and

similarity computations [31]. Document representation refers to the number of clusters,

the number of documents, and the number, type and scale of the features available to the

clustering algorithm. Feature selection is the process of identifying the most effective subset

of the original features to use in clustering [30]. Feature extraction is the use of one or

more transformations of the input features to produce new salient features [30]. Either or

both of these techniques can be used to obtain an appropriate set of features to use in

clustering. Document similarity is usually measured by a pair-wise similarity function. A

simple similarity measure, like cosine function, is often used to reflect the similarity between

two documents. The grouping step of text clustering can be performed in a number of ways.

Hierarchical clustering algorithms produce a nested series of partitions based on a criterion for

merging or splitting clusters based on similarity. Partitional clustering algorithms identify

the partitions that optimizes a clustering criterion. The performance of text clustering
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algorithm could be evaluated by the cluster validity analysis, which is the assessment of

a clustering procedure’s output. There are three types of validation studies. An external

assessment of validity compares the recovered structure to a priori structure. An internal

examination of validity tries to determine if the structure is intrinsically appropriate for the

data. A relative test compares two structures and measures their relative merit.

1.2 Motivation

Since text documents are written in natural language, which is different from structured

data, existing data clustering algorithms do not perform very well on text documents. When

choosing a text clustering algorithm, there are many critical questions to ask, such as: How

should the data be represented? Which similarity measure is appropriate for text clustering?

How should domain knowledge be utilized in text clustering? How can a very large data set

be clustered efficiently? In order to answer these questions, first, let’s look at closely the

special requirements for text clustering.

• Finding a suitable model to represent the document is a nontrivial issue. Most of the

text documents are written in a human language, which is context-sensitive. As the

accurate meaning of a sentence has a close relationship with the sequential occurrences

of words in it, the document model better preserves the sequential relationship between

words in the document.

• In the vector space model, the length of document vectors are normalized. However,

in real life, the sizes of vocabularies for different topics are different from each other.

• In the real world, people may use different word forms to express the same word mean-

ing, and the same word form to express different word meanings. In text clustering,

if only word forms are used as features, the topics of documents may not be fully

captured. Word meanings are better than word forms in terms of representing the

topics of documents. Thus, it is beneficial to involve ontology into the text clustering

algorithm.
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• Not all the words in a document are closely related with the topic of the document.

Documents without these irrelevant words will certainly provide valuable information

for clustering. How to identify and remove them is a nontrivial problem.

• Associating a meaningful label to each final cluster is essential. Then, the user can

easily find out what the cluster is about since the label can provide an adequate de-

scription of the cluster. However, it is time-consuming to determine the labels after

the clustering process is finished.

• Overlapping between document clusters should be allowed because a document can

cover multiple topics. For example, a morning news may have information about a

war followed by information about the popularity of teas in US.

• The high dimension of text documents should be reduced. Usually there are about

200-1000 unique words in a typical document. In order to efficiently process a huge

text database like WWW, the text clustering algorithm should have a way to reduce

the high dimension.

• The number of clusters is unknown prior to the clustering. It is difficult to specify a

reasonable number of clusters for a data set when you have little information about

it. Instead of telling the clustering algorithm what is the number of clusters, it makes

more sense to let the clustering algorithm find it out by itself.

These issues have motivated our research, and its goal is to show a new perspective in

text clustering methodology and algorithms. A group of text clustering algorithms proposed

target the unique characteristics of text documents and deliver better clustering results than

existing algorithms.

1.3 Contributions

In this research, we develop a group of text clustering clustering algorithms with high per-

formance, and the main contributions of our research are as follows:
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• Novel text clustering algorithms based on frequent word (meaning) sequences are pro-

posed and implemented. The unique features of these algorithms are : 1) A new

frequent word sequence mining algorithm is developed, which is quite scalable as the

database size increases. 2) A new document representation is proposed, which keeps

the sequential relationship between words in documents. 3) The high dimension of

text database is reduced in the clustering process since only the frequent word (mean-

ing) sequences are considered. 4) The document closeness is measured based on the

shared frequent word(meaning) sequences. 5) Ontology is applied in the text clustering

algorithm to use the word meanings.

• A new text clustering algorithm with feature selection is proposed. The clustering

quality is expected to be improved by performing feature selection and clustering at

the same time. Our contributions in this research are: 1) Based on χ2, a new statistic

data Rw,c is proposed. This data could specify whether the term-category dependency

is positive or negative. 2) A new supervised feature selection method CHIR is proposed.

This method evaluates χ2 and Rw,c together to provide a more accurate rank of features.

3) A new text clustering algorithm is proposed to perform a supervised feature selection

method in an unsupervised scenario. At the same time, the high dimension of text

database is reduced by performing the feature selection.

• A group of text clustering algorithms are developed to apply the neighbor matrix to

the family of k-means algorithms. The new features of these algorithms are: 1) A new

initial centroids selection method is proposed. The desired initial centroids should be

well-distributed to attract sufficient nearby documents. 2) The document closeness

measurement is enhanced from the cosine function. This new function involves global

information into the pair-wise similarity measurement. 3) A new heuristic function

is proposed for selecting a cluster to split for the bisecting k-means algorithm. This

method provides a new way to evaluate the quality of a cluster.

• A new parallel bisecting k-means algorithm is proposed and implemented. This al-
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gorithm fully utilizes the data-parallelism of the bisecting k-means algorithm, and

adopts a prediction step to balance the workloads of multiple processors to achieve a

high speedup.

1.4 Outline of the Dissertation

The rest of the dissertation is structured as follows: Chapter 2 describes the CFWS and

CFWMS text clustering algorithms, which are based on frequent word (meaning) sequences.

Then, the performance of these two algorithms are discussed. Chapter 3 introduces a new

statistical data Rw,c. Then, a new feature selection method CHIR and a new clustering

algorithm with feature selection (TCFS) are described. Chapter 4 introduces a group of new

text clustering algorithms which apply the neighbor matrix in the k-means and bisecting k-

means algorithms. Chapter 5 describes the new parallel bisecting k-means algorithm PBKP

for message-passing multiprocessor systems. This research is concluded in Chapter 6.
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Chapter 2

Text Clustering Based on Frequent
Sequences

2.1 Introduction

Nowadays in every industry, almost all the documents on paper have their electronic copies.

This is because the electronic format provides safer storage and occupies much smaller space.

Also, the electronic files provide a quick access to these documents. The text database which

consists of documents is usually very large. The Word Wide Web is such a database, and

how to explore and utilize this kind of text database is a major question in the areas of

information retrieval and text mining. With the development of the World Wide Web, it

is getting more and more popular to use web search engines to get information. When a

user submits a query, the search result is usually a long list of ranked documents. The users

may not find what they want from the top 10 documents on the list. It is time-consuming

and annoying to browse the result documents one by one. Thus, when the users cannot find

matching one after 10-20 clicks, they may give up. This is why the precision of the retrieval

for a given query is an important for the search engine.

In order to increase the precision of the retrieval result, many methods have been proposed

[3]. One approach is clustering the retrieval result before showing it to the user. The

idea behind it is that the retrieval result usually covers several topics and the user may be

interested in just one of them. By clustering the text documents, the documents sharing
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the same topic are grouped together. When the clusters are returned, the user can select

the group that interests him/her most. This method makes the search engine more efficient

and accurate. Text clustering is known as an unsupervised and automatic grouping of text

documents into clusters, so that documents within a cluster have a high similarity between

them, but they are dissimilar to documents in other clusters [22]. It is different from text

classification because of the lack of labeled documents for training.

The main question is which text clustering algorithm is the best for this job. First, let’s

look at closely the special requirements for the clustering of the text retrieval result.

• Finding a suitable model to represent the document is a nontrivial issue. Most of the

text documents are written in a natural language, which is context-sensitive. As the

accurate meaning of a sentence has close relationship with the sequential occurrences

of words in it, the document model better preserves the sequential relationship between

words in the document.

• Associating a meaningful label to each final cluster is essential. Then, the user can

easily find out what the cluster is about since the label can provide an adequate de-

scription of the cluster. However, it is time-consuming to determine the labels after

the clustering process is finished.

• Overlapping between document clusters should be allowed because a document can

cover several topics. For example, a morning news may have an information about a

war followed by an information about the popularity of teas in US.

• The high dimension of text documents should be reduced. Usually there are about

200-1000 unique words in a typical document. In order to efficiently process a huge

text database like WWW, the text clustering algorithm should have a way to reduce

the high dimension.

• The number of clusters is unknown prior to the clustering. It is difficult to specify a

reasonable number of clusters for a data set when you have little information about

8



it. Instead of telling the clustering algorithm what is the number of clusters, it makes

more sense to let the clustering algorithm find it out by itself.

Our two new text clustering algorithms, named Clustering based on Frequent Word

Sequences (CFWS) and Clustering based on Frequent Word Meaning Sequences (CFWMS)

are designed to meet the above special requirements of text clustering to varying degrees.

A “word” is the word form shown in the documents. A “word meaning” is the lexicalized

concept that a word form can be used to express [66]. The key features of these two algorithms

are: they treat the text document as a sequence of words (word meanings), instead of a bag

of words, and whether documents share frequent word (meaning) sequences or not is used

as the measurement of their closeness.

A frequent word (meaning) sequence is defined as a sequence of frequent words (word

meanings) appearing in at least a certain number (or percentage) of documents, and we

developed an algorithm to find the frequent word (meaning) sequences from a text database.

Finding frequent itemsets is an important data ming topic, and it was originated from

the association rule mining of transaction data set. Recently, some text clustering algorithms

used frequent word sets to compare the distance between documents. Considering the dif-

ference between text documents and transaction data set, using the frequent word sequences

is more appropriate for text clustering than using the frequent word sets.

Since the order of words in a document is important, we didn’t adopt the vector space

model. In our algorithm, each document is reduced to a compact document by keeping

only the frequent words (word meanings). In the compact document, we keep the sequential

occurrence of words (word meanings) untouched to explore the frequent word (meaning)

sequences. By building a Generalized Suffix Tree (GST) for all the compact documents,

the frequent word (meaning) sequences and the documents sharing them are found. Then,

frequent word (meaning) sequences are used to create clusters and summarize their content

for the user. We found our CFWS and CFWMS algorithms are more accurate than other

clustering algorithms.

The rest of this chapter is organized as follows: Section 2.2 introduces the related work on
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text clustering and the mining of frequent word sequences. Section 2.3 describes the method

to find frequent word sequences from a text database in detail, and Section 2.4 describes the

new CFWS clustering algorithm. The experimental results of CFWS and the performance

comparison with FIHC [21] and bisecting k-means [59] are presented in Section 2.5. Section

2.6 contains some conclusions.

2.2 Related Work

There are two general categories of clustering methods: agglomerative hierarchical and par-

titioning methods. In the previous researches, both of them are applied to text clustering.

Agglomerative hierarchical clustering (AHC) algorithms initially treat each document as a

cluster, use different kinds of distance functions to compute the similarity between all pairs

of clusters, and then merge the closest pair [30]. This merging step is repeated until the

desired number of clusters is obtained. Overlapping of clusters is not allowed in AHC. Com-

paring with the bottom-up method of AHC algorithms, the family of k-means algorithms

[13, 33, 36], which belong to the partitioning category, adopted the top-down method. Ini-

tially, the whole database is treated as a cluster. Based on a heuristic function, it selects a

cluster to split. The split step is repeated until the desired number of clusters is obtained.

These two categories are compared in [59].

Unweighted Pair Group Method with Arithmetic Mean (UPGMA) [30] of AHC is re-

ported to be the most accurate one in its category. Bisecting k-means is reported to outper-

form the k-means as well as the agglomerative approach in terms of accuracy and efficiency.

The difference between bisecting k-means and k-means is that bisecting k-means splits a

selected cluster into two subclusters, instead of k subclusters. Since these two categories of

clustering algorithms are originally designed to cluster formatted data sets, the special char-

acteristics of text databases are not taken care of well. First, there is no description given

to each cluster. Each text document cluster should have a description about its content,

so that the clustering result can be utilized more efficiently. Second, the number of unique

words in a document may be in the order of several hundreds or more, but these algorithms
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do not have steps to reduce the high dimension of the text documents during the clustering.

Third, the user must specify the desired number of clusters before the clustering process.

However, it is difficult to specify a reasonable number of clusters before you closely study

the text database. We may run the algorithm several times with different number of clusters

to choose a appropriate one, but this is too time-consuming.

Recently, there is a new category of text clustering algorithms developed. They address

the special characteristics of text documents and use the concept of frequent word sets for

the text clustering. In [63], they proposed a new criterion for clustering transactions using

frequent itemsets, instead of using a distance function. The FTC algorithm introduced in

[5] used the shared frequent word sets between documents to measure their closeness in text

clustering. The FIHC algorithm proposed in [21] went further in this direction. It measures

the cohesiveness of a cluster directly by using frequent word sets, such that the documents

in the same cluster are expected to share more frequent word sets than those in different

clusters. FIHC uses frequent word sets to construct clusters and organize them into a topic

hierarchy. These new algorithms are reported to be comparable to bisecting k-means in

terms of clustering accuracy. An advantage of these algorithms is that a label is provided for

each cluster. The label is the frequent word sets shared by the documents in each cluster. A

problem of these algorithms is that they strongly depend on the frequent word sets, which

are unordered and cannot represent text documents well in many cases.

The concept of the frequent word set is based on the frequent itemset of the transac-

tion data set. The items in a transaction are independent, so that changing the order of

these items in a transaction does not change the result of the data mining performed on

the database. But the text document is different. The sequential order of words in a doc-

ument plays an important part of delivering the meaning of the document. The change of

the relative positions of two words may change the content of a document. For example,

“association rule” is a concept of data mining. If these two words, “association” and “rule”,

appear in the reverse order within a document, like “The rule of our association is ...”, they

represent a totally different meaning. If only the word set {association, rule} is used, it
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cannot differentiate these two cases.

Since all the clustering algorithms mentioned above treat each document as a bag of

words, they use the vector space model to represent a document after the preprocessing

steps, such as the removal of the stop words and the stemming of words. In this model,

each text document is represented by a vector of the frequencies of the remaining terms.

The information about the position of the words in the text documents is not stored in

this model, thus it is not good enough for text documents. In this chapter, we propose a

new model to represent the document. The sequential relationship between words in the

document is preserved in the model and utilized for the text mining.

Since frequent word sequences can represent the document well, clustering text documents

based on frequent word sequences is meaningful. The idea of using word sequences (phrases)

for text clustering was proposed in [69]; and then the Suffix Tree Clustering (STC), which

is based on this idea, was proposed in [70]. STC does not treat a document as a set of

words but rather as a string, in order to use the proximity information between words. STC

builds a suffix tree to identify sets of documents that share common phrases, and uses this

information to create clusters and summarize their contents.

However, STC does not reduce the high dimension of the text documents, hence its

complexity is quite high for large text databases. On the other hand, our CFWS algorithm

uses only the frequent word sequences, not all the phrases in the documents, hence the

dimension of the documents is reduced dramatically. Moreover, a phrase is meaningful to

the clustering result only when it is shared by at least a certain number of documents. For

example, suppose that there are only two documents, say A and B, sharing a phrase “Banana

Republic”(a fashion brand name) in a document collection, and all other documents in the

collection do not have this phrase, while 20 documents, including A and B, have a phrase

“fashion trend”. It is obvious that a cluster about “fashion trend” is more desirable than

a cluster about “Banana Republic” in the final clustering. From this example, we can see

that phrases supported by a very small number of documents play a little role in the final

clustering result. Thus, we remove these infrequent phrases at the early stage of the process,
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so that the dimension of the documents is reduced and the clustering result would not be

affected by them.

Ahonen-Myka et al. also pointed out in [46, 47, 48] that the sequential aspect of word

occurrences in documents should not be ignored to improve the information retrieval per-

formance. They proposed to use the maximal frequent word sequence, which is a frequent

word sequence not contained in any longer frequent word sequence. They claimed that max-

imal frequent word sequences provide a rich computational representation of the document,

which makes future retrieval easy and gives a human-readable description of the document.

However, all frequent word sequences in a text database are as important as the maximal

frequent word sequences. Frequent word sequences of all length contain more information

about the database than the maximal frequent word sequences.

2.3 Finding Frequent Word Sequences

2.3.1 Term Definitions

In our algorithm, a text document d is viewed as a sequence of words, so that it can be

represented as d =< w1, w2, w3, . . . >, where w1, w2, w3, . . . are words appearing in d. Like

a frequent itemset in the association rule mining of a transaction data set [1], a word set

is frequent when its support is at least the user-specified minimum support. That means,

there are at least the specified minimum number (or percentage) of documents containing

this word set. A frequent k-word set is a frequent word set containing k words.

An ordered sequence of two or more words is called a word sequence. A word sequence

S is represented as < w1, w2, . . . >. A frequent word sequence is denoted by FS in this

chapter. For example, FS =< w1, w2, w3, w4 >, in which w2 is not necessarily following

w1 immediately in a text document. There could be words between them as long as w2 is

after w1 and the words between them are not frequent. A text document d supports this

word sequence if these four words (w1, w2, w3, and w4) appear in d in the specified order.

A word sequence S is an FS when there are at least the specified minimum number (or
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percentage) of documents supporting S. Multiple occurrences of a sequence in the same

document is counted as one. The term phrase is defined in [70] as an ordered sequence of

one or more words, and no gaps are allowed between words. Thus, our definition of frequent

word sequence is more adaptable to the variations of human languages. For example, “boys

play basketball” may be a frequent word sequence supported by both of the following two

sentences:

• Young boys like to play basketball.

• Almost all boys play basketball.

A frequent k-word sequence is an FS with length k, such as FS =< w1, w2, . . . , wk >,

and it has two frequent subsequences of length k − 1, which are < w1, w2, . . . , wk−1 >

and < w2, w3, . . . , wk >. For example, FS =< he, play, basketball > has two frequent

subsequences of length 2, which are < he, play > and < play, basketball >. Please note

that < he, basketball > is not its subsequence of length 2 because “play” is a frequent word

in the database and we cannot omit it.

Theorem 1: It is always true that if a word wi is a member of a frequent k-word sequence,

it must be a member of a frequent k-word set. But a member of a frequent k-word set is not

necessarily a member of a frequent k-word sequence, where the order of the k words matters.

This is very straightforward.

Theorem 2: If a k-word sequence is frequent, all its subsequences of length k − 1 are

frequent. It is easy to prove from the definition of the subsequence.

2.3.2 Algorithm Details

Finding the frequent word sequences has two steps: finding frequent 2-word sets first, then

finding frequent word sequences of all length by using the Generalized Suffix Tree (GST)

data structure.
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2.3.2.1 Finding Frequent 2-Word Sets

The goal of this step is to reduce the dimension of the database (i.e., the number of unique

words) by eliminating those words that are not frequent enough to be in a frequent k-word

sequence, for k ≥ 2. This step is simple and straightforward. We use an association rule

miner to find the frequent 2-word sets that satisfy the minimum support. All the words

in frequent 2-word sets are put into a set WS. Based on Theorems 1 and 2, we know that

members of the frequent word sequences of all length k, k ≥ 2, must in the set WS.

After finding the frequent 2-word sets, we remove all the words in the documents that

are not in WS. After the elimination, the resulting documents are called compact documents.

Example database: D = {d1, d2, d3}

• d1: Young boys like to play basketball.

• d2: Half of young boys play football.

• d3: Almost all boys play basketball.

There are 11 unique words in this database D: {all, almost, basketball, boys, football,

half, like, of, play, to, young}. If we specify the minimum support as 60%, the minimum

support count is 2 for this case. The set of frequent 2-word sets is {{young, boys}, {boys,

play}, {boys, basketball}, {young, play}, {play, basketball}}; and WS = {young, boys,

play, basketball}. After removing those words not frequent, the database D becomes D ′ =

{d′
1, d

′
2, d

′
3} as follows, where the removed words shown in parenthesis.

Compact documents:

• d′
1: Young boys (like to) play basketball;

• d′
2: (Half of) young boys play (football);

• d′
3: (Almost all) boys play basketball;

From this example, we can see that the dimension of D is reduced from 11 to 4. This

reduction has a big impact on our next step of building the generalized suffix tree for D′.
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2.3.2.2 Building a Generalized Suffix Tree (GST)

Our goal is to find the frequent word sequences of the database. We adopt the suffix tree,

a well-known data structure for sequence pattern matching [64], to find the all frequent

word sequences. Each compact document is treated as a string of words and inserted into

a generalized suffix tree (GST), one by one. Finally, by collecting the information stored in

all the nodes of this GST, we can find all the frequent word sequences of this database.

A suffix tree for a string S is actually a compressed trie for the non-empty suffixes of S.

A GST is a suffix tree that combines the suffixes of a set of strings. In our case, we build

a GST of all the compact documents in the text database, so some modification are made

on the structure of the GST to meet our needs. In the rest of this chapter, we will use the

terms “suffix tree” and “GST” interchangeably.

• A suffix tree is a rooted, directed tree.

• There are two kinds of nodes: internal nodes and suffix nodes.

• Each internal node has at least two children.

• Each edge is labeled with an non-empty substring of string S, and is represented as l.

The label of a node n is the concatenation of the labels on the path from the root to

this node. This label is represented as stringL of n, or simply n.stringL.

• The labels of different edges coming from the same node must have different starting

words.

• For each suffix s of string S, there exists a suffix node whose label is s.

• There is a document id set associated with each suffix node. If a substring of a doc-

ument ends at a node, then the document id is inserted into the id set of the node.

These document ids are used to check the multiple occurrences of a sequence in the

same document.
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Figure 2.1: Generalized Suffix Tree for the compact documents with 7 nodes.

Node No. Word Sequence Length of Document Ids Number of

Word Sequence Document Ids

1 young boys play 3 1,2 2
2 boys play 2 1,2,3 3
3 play 1 1,2,3 3
4 basketball 1 1,3 2
5 young boys play basketball 4 1 1
6 boys play basketball 3 1,3 2
7 play basketball 2 1,3 2

Table 2.1: Word sequences associated with the nodes in Figure 2.1

Figure 2.1 shows the GST built for the previous example. The nodes of the GST are

drawn as circles, each with an assigned node number in it for later references. Each suffix

node has a box attached, and it contains the document id set of the suffix node. After

building the GST, we traverse the tree by depth-first. On the way down, the labels of the

edges are concatenated to become the stringL of each node. On the way up, each child

node sends its document id set to its parent. The support count of stringL of this parent

node is the size of the union of all the document id sets of its children. By checking the

support count and the length of stringL of each node, we can get the information about all

the frequent word sequences of the database. In the example shown above, we have 7 nodes

in the GST, and the details are given in Table 2.1.

Since the minimum support for frequent words, θ, is set to 60% in this example, the
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minimum support for frequent word sequences could not be smaller than 60%. Only those

words whose support is at least θ are kept in the compact documents, so that we can find only

the frequent word sequences with that minimum support θ. In this example, the minimum

length of the word sequence is set to 2, so we can get four frequent word sequences, which are

represented by nodes 1, 2, 6, and 7. The maximal frequent word sequences of this database

are represented by nodes 1 and 6.

The word sequence of node 2 is a subsequence of the word sequence of node 1, but its id

set is a superset of that of node 1. If we find only maximal frequent word sequences, some of

the information would be lost. As mentioned in [46], maximal frequent word sequences can

be used as content descriptors for documents. However, if we want to summarize the content

of this example database, a frequent word sequence “boys play” is the best description. A

maximal frequent word sequence “young boys play” covers only the content of first two

documents, d1 and d2, and another maximal frequent word sequence “boys play basketball”

covers only the content of documents d1 and d3.

By finding all the frequent word sequences, there may be some duplicate information

found, like the sequences of nodes 6 and 7 in this example. If it is necessary to save the space,

by comparing their document id sets and word sequence members, we can combine these

two nodes into one without losing information. As illustrated by this example, by finding

all frequent word sequences, we can have some useful information about the database for

further information retrieval and data mining operations.

In [70], the Suffix Tree Clustering (STC) algorithm was proposed, which clusters text

documents by constructing the suffix tree of all the sentences of the documents in the col-

lection, and Figure 2.2 shows the suffix tree for the example database D. Comparing this

suffix tree of the STC algorithm with our suffix tree shown in Figure 2.1, we can see that

the size of the tree is dramatically reduced due to the elimination of infrequent words. As

the number of unique words and the size of the compact database are much smaller than

those of the original database, our algorithm is clearly more efficient than STC.
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Figure 2.2: Suffix Tree for the original documents with 16 nodes.

2.4 Clustering Based on Frequent Word Sequences

2.4.1 Term Definitions

A cluster candidate is a set of text documents supporting the same frequent word sequence

(FS). A cluster candidate i is represented by cci[FSi, Idsi], in which FSi is the frequent

word sequence supported by this cluster candidate and Idsi is the set of document ids. A

cluster is a set of text documents covering the same topic. A cluster i is represented as

Ci[Ti, Idsi], where Ti is composed of a group of frequent word sequences and Idsi is the set

of document ids that cover the topic Ti. Thus, a cluster candidate can be considered as a

cluster whose topic contains only one frequent word sequence.

The final clustering C is a set of clusters {C1, C2, . . .}. Since we allow overlapping between

clusters, the intersection of two clusters is not necessarily empty.

2.4.2 Clustering Based on Frequent Word Sequences (CFWS) Al-

gorithm

Our CFWS algorithm has two steps: building a GST to find frequent word sequences, then

combining clustering candidates to obtain the final clustering.
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2.4.2.1 Finding Frequent Word Sequences and Collecting the Cluster Candi-
dates

We use the method explained in Section 2.3 to build a GST for the database. The minimum

support of the frequent word sequences is usually in the range of 5–15%. When the minimum

support is too large, the total number of frequent words would be very small, so that the

resulting compact documents would not have enough information about the original data

set. In this case, a lot of documents will not be processed because they do not support any

frequent word, and the final clustering result will not cover these documents.

Since the document id sets are stored at the suffix nodes of the GST, we can use these sets

directly to obtain the cluster candidates. Only the nodes of the tree representing frequent

word sequences can produce the cluster candidates. As shown in Table 2.1, we can obtain

four cluster candidates for our example database: cc1[FS1 = “boys play”, Ids1 = {1, 2, 3}],
cc2[FS2 = “play basketball”, Ids2 = {1, 3}], cc3[FS3 = “young boys play”, Ids3 = {1, 2}],
and cc4[FS4 = “boys play basketball”, Ids4 = {1, 3}].

2.4.2.2 Combining the Cluster Candidates

The FS of the cluster candidate describes what the cluster candidate is about. For example,

from FS1 =“boys play”, we know that cc1 covers the documents regarding which game the

boys play. However, sometimes we do not need fine clusters, instead we may be interested

in a more general topic, such as the popular sports among teenagers. In that case, we can

merge the related cluster candidates. The agglomerative clustering algorithm also merges

two clusters closely related to each other. However, instead of using a distance function to

measure the closeness between two cluster candidates, we use the k-mismatch concept of

sequential patterns.

Given a pattern p, a text t, and a fixed number k that is independent of the lengths of p

and t, a k-mismatch of p is a |p|-substring of t that matches (|p|−k) characters of p. That is,

it matches p with k mismatches. In our case, we are checking the mismatches between the

frequent word sequences found by building the GST of the document collection. There are
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three types of mismatches that can happen between two frequent word sequences FSi and

FSj: insertion, deletion and substitution. Insertion means that by inserting k words into the

shorter pattern FSi, it becomes the longer pattern FSj. Deletion means that by deleting

k words from the longer pattern FSj, it becomes the shorter pattern FSi. Substitution

is the relationship between two patterns, FSi and FSj, of the same length, such that by

substituting k words in FSi, it becomes FSj. The following are the examples of three cases

when k = 1:

• Insertion: {|FSi| < |FSj| | FSi = “boys play”; FSj = “boys play basketball”};
By inserting a word “basketball” in FSi ⇒ FSi = FSj;

• Deletion: {|FSj| > |FSi| | FSj = “boys play”; FSi = “play”};
By deleting a word “boys” from FSj ⇒ FSj = FSi;

• Substitution: {|FSi| = |FSj| | FSi =“boys play”; FSj = “girls play”};
By substituting a word “boys” of FSi with a word “girls”⇒ FSi = FSj;

For a given k, we merge those cluster candidates with k-mismatched patterns (i.e., fre-

quent word sequences). The concept is that two cluster candidates with k-mismatched

patterns may cover similar topics. For example, we can say that the topic covered by the

cluster candidate i with FSi =“boys play” is close to the topic covered by the cluster candi-

date j with FSj =“play basketball”. So, we can merge them to have a bigger cluster, which

covers the topic about who plays which game. The value of parameter k determines how fine

the final clustering would be. If k is 0, the cluster candidates are the final clusters, which

are the finest clusters that could be found from the GST. As k value increases, the topic

covered by each cluster of the final clustering would be more general.

After we merge several cluster candidates into clusters, we may find some clusters have

too much overlapping between their document id sets. The overlapping of two clusters, Ci

and Cj, can be measured as follows:

O(Ci, Cj) =
Idsi ∩ Idsj

Idsi ∪ Idsj

(2.1)
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If O(Ci, Cj) is larger than the specified overlapping threshold value δ, these two clusters are

combined into one cluster. Obviously, the range of δ is [0, 1]: When δ = 0, these two clusters

are disjoint; and when δ = 1, these two clusters have the same set of documents, which

does not mean these two clusters are identical because this set of documents may cover two

different topics.

In the end, we collect those documents that are not in any cluster because they do not

contain a frequent word sequence. These documents form a cluster by themselves, and their

topic could be specified as “other issues”.

Our text clustering algorithm CFWS is summarized as follows:

1. Given a collection of text documents D = {d1, d2, d3, . . . dn}, find the set of frequent

2-word sets of D with the user-specified minimum support. Obtain WS, the set of all

words, each of which is a member of a frequent 2-word set.

2. Reduce each document di, 1 ≤ i ≤ n, into a compact document d′
i by removing every

word w from di if w /∈ WS.

3. Insert each compact document into the GST.

4. Using the depth-first traversing, visit every node in the GST. If a node j has a frequent

word sequence FSj with the set of document ids Idsj, create a cluster candidate

ccj[FSj, Idsj].

5. Merge the related cluster candidates into clusters based on the k-mismatch concept.

6. Combine the overlapping clusters if necessary.

2.5 Clustering Based on Frequent Word Meaning Se-

quences (CFWMS)

In the previous CFWS algorithm, in order to find frequent word sequences in the text

database, we count the occurrences of each word in the documents first. This is a word
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form matching process, where a word form refers to a literal term in text documents. On

the other hand, a word meaning refers to the lexicalized concept that a word form can be

used to express [66]. In the real world, people may use different word forms to express the

same word meaning, and those word forms are called synonyms. A word meaning can be

represented by a synonym set, or shortly synset, a set of word forms which are synonyms.

In this chapter, a synset is denoted by SS, for example SS1 = {car, auto}. This lexical

relation between word forms may affect our clustering result. For example, “auto” is a

synonym of “car”, so they are interchangeable in documents. In a text database, when the

word form matching is performed to find frequent words, the support counts of “car” and

“auto” could be 6 and 4, respectively. If the minimum support count is 9, neither of these

two word forms is frequent. However, the sum of their support counts is larger than the

minimum support count if 6 documents refer to the automobile by using “car” and other 4

documents use “auto”. If we treat these two word forms as one, these 10 documents may be

grouped into one cluster.

Hyponymy/hypernymy is a semantic relationship between word meanings, which is also

very important for text clustering. This relationship is also called subset/superset relation-

ship, and it represents the relationship between a specific word meaning and a general word

meaning. For example, the hypernym of a synset {car, railcar} is {vehicle}, and the hyernym

of {vehicle} is {conveyance, transport}. If we use “→” to represent this relationship, these

three synsets could be linked as {car, railcar} → {vehicle} → {conveyance, transport}. In

this case, {vehicle} is a direct hypernym of {car, railcar} and {conveyance, transport} is a

inherited hypernym of {car, railcar}. Such a link of a synset with its hypernyms is called

a synset link (SL). Documents containing “car” may share the same topic with other docu-

ments containing “vehicle” or “transport”. If we perform only the word form matching, we

may lose this information.

Word meanings are better than word forms in terms of representing the topics of doc-

uments. In order to improve the quality of clustering, we propose a new algorithm named

Clustering based on Frequent Word Meaning Sequences (CFWMS), which uses frequent word
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meaning sequences as the measurement of the closeness between documents.

In CFWMS, word forms in the documents are converted to the word meanings they

express first. After the conversion, each text document is treated as a sequence of word

meanings. For example, a text document d can be viewed as d =< SS1, SS2, SS3, . . . >.

A word meaning sequence is considered frequent if there are more than certain number (or

percentage) of documents containing it. A frequent word meaning sequence is denoted by

FMS in this chapter.

Since most words have multiple word meanings, identifying the right word meaning that

a word form expresses in a certain lexical environment is not a trivial problem. In our

algorithm, we use a meaning union (MU ), which is a union of synset links, to predict the real

word meaning. A synset link can be treated as a meaning union by itself. For example, for a

word form “box” in a document, there is a meaning union MU = {SS1 → SS2, SS3 → SS4},
where SS1={box}, SS2={container}, SS3={box, loge}, and SS4={compartment}. We

expect that one of the synsets in MU is the real word meaning expressed by the word form

“box” in this document. We will explain how to find the meaning unions in Section 2.5.1.

In this way, a document d, after the conversion, can be represented by meaning unions as

d′ =< MU 1, MU 2, MU 3, . . . >. Similarly, a frequent word meaning sequence can be also

represented as FMS =< MU 1, MU 2, . . . >.

2.5.1 CFWMS Algorithm

Our CFWMS algorithm has three steps: 1) preprocessing of documents to convert word

forms into meaning unions; 2) finding frequent word meaning sequences and collecting cluster

candidates; and 3) combining cluster candidates to obtain the final clusters.

2.5.1.1 Document Preprocessing Using WordNet

The most important procedure in the preprocessing of documents is to convert the word

forms into meaning unions by using an ontology. As an ontology, we used WordNet [66],

an on-line lexical reference system. WordNet covers semantic and lexical relations between
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word forms and word meanings, such as synonymy, polysemy, and hyponymy/hypernymy.

Since WordNet provides morphological relations between word forms, before the con-

version of word forms into word meanings, we perform the removal of stop words, but not

stemming. WordNet contains only nouns, verbs, adjectives and adverbs. Since nouns and

verbs are more important in representing the content of documents and also mainly form

the frequent word meaning sequences, we focus only on nouns and verbs and remove all ad-

jectives and adverbs from the documents. For those word forms that do not have entries in

WordNet, we keep them in the documents since these unidentified word forms may capture

unique information about the documents.

For each document, two passes are required for the conversion. The first pass is to

retrieve the meaning union (MU) from WordNet for every noun and verb in the document.

In WordNet, a word form’s multiple word meanings represented by synsets are ordered from

the most to the least frequently used. For every noun and verb, we select the first two

synsets containing the word form. For each synset selected, one direct hypernym synset

is retrieved, too. If the word form has only one synset, one inherited hypernym synset

is retrieved as well. In this way, each word form has its meaning union which contains

at least one synset link. We tried different numbers of synsets and hypernyms for each

word form, and found these selections produce a good clustering result in most cases. For

example, a document d1 =< w1, w2, w3 > can be converted to a sequence of meaning unions

as d′
1 =< MU 1, MU 2, MU 3 >, where MU 1 = {SS4 → SS5, SS6 → SS7}, MU 2 = {SS3 →

SS8, SS9 → SS10}, MU 3 = {SS1 → SS5, SS2 → SS3}.
In the second pass, we try to reduce the number of unique meaning unions in the converted

document. The word forms in one document may tend to express similar word meanings.

Thus, if different meaning unions share a synset, we replace them with a single meaning

union containing a merged synset link. In this case, the order of replacement is based on

the frequencies of the synsets in the document. For that purpose, the occurrences of each

synset in the meaning unions of the document is counted, and a list of synsets with their

supporting meaning unions is created. Table 2.2 shows the details of each replacement step
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for the given example. The first three columns in Table 2.2 show the synsets, their support

counts and supporting meaning unions.

We perform the replacement as follows:

Step 1: Select the synset with the largest support count in the list.

• If the support count of the selected synset is larger than 1, which means more than

one meaning union contains this synset, then we create a new meaning union to re-

place them. For example, if SS5 is selected, its supporting meaning unions, MU 1

and MU 3, are replaced by a new meaning union MU 4. This new meaning union

contains one synset link (SL) composed of SS5 and all its hyponyms/hypernyms

in its supporting meaning unions; i.e., MU 4 = {{SS1, SS4} → SS5}. The sup-

port count of the selected synset SS5 is reduced to 0. At the same time, the

support counts of other synsets which were in MU 1 and MU 3 are reduced by one

since we have removed these two meaning unions from the document.

• If the support count of the selected synset is 1, its supporting meaning union

stays and the support counts of the synsets in it are reduced to 0 since we have

processed this meaning union.

Step 2: Repeat Step 1 until the support count of every synset in the list becomes 0.

Since all the meaning unions sharing the same synset are replaced by one meaning union

which contains only one SL, the number of unique meaning unions in the document can be

reduced.

2.5.1.2 Finding Frequent Word Meaning Sequences and Collecting the Cluster
Candidates

After the preprocessing step, every document in the database is coverted to a string of mean-

ing unions. For example, we may have an example preprocessed database D′ = {d′
1, d

′
2, d

′
3},

where

• d′
1 =< MU 4, MU 2, MU 4 >
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Step 1 (pick SS5) Step 2 (pick SS3)

d′
1 =< MU 1, MU 2, MU 3 > d′

1 =< MU 4, MU 2, MU 4 > d′
1 =< MU 4, MU 2, MU 4 >

Synsets Support Meaning Support Meaning Support Meaning

Count Union Ids Count Union Ids Count Union Ids

SS5 2 MU 1, MU 3 2 ⇒ 0 0
SS3 2 MU 2, MU 3 2 ⇒ 1 MU 2 1 ⇒ 0
SS2 1 MU 3 1 ⇒ 0 0
SS1 1 MU 3 1 ⇒ 0 0
SS4 1 MU 1 1 ⇒ 0 0
SS6 1 MU 1 1 ⇒ 0 0
SS7 1 MU 1 1 ⇒ 0 0
SS8 1 MU 2 1 MU 2 1 ⇒ 0
SS9 1 MU 2 1 MU 2 1 ⇒ 0
SS10 1 MU 2 1 MU 2 1 ⇒ 0

Table 2.2: Reorganizing the meaning unions in document d′
1

– MU 4 = {{SS4, SS1} → SS5}

– MU 2 = {SS3 → SS8, SS9 → SS10}

• d′
2 =< MU 5, MU 6 >

– MU 5 = {SS2 → SS5, SS7 → SS11}

– MU 6 = {{SS8, SS6} → SS13}

• d′
3 =< MU 1, MU 3, MU 7 >

– MU 1 = {SS12 → SS13}

– MU 3 = {SS14 → SS15}

– MU 7 = {SS16 → SS17}

In order to find frequent word meaning sequences, we use association rule miner to find

frequent meaning unions (FMUs) first, then the frequent sets of 2 meaning unions. If we

perform exact matching between meaning unions, we cannot find any frequent sets of 2

meaning unions in D′ when the minimum support count is 2. In fact, there is a frequent
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word meaning sequence in this database. If we check the synsets in every meaning union,

we can find that synset SS5 is shared by MU 4 of d′
1 and MU 5 of d′

2; synset SS8 is shared

by MU 2 of d′
1 and MU 6 of d′

2; and synset SS13 is shared by MU 6 of d′
2 and MU 1 of d′

3. The

frequent word meaning sequence (FMS) found is < SS5, SS8 >.

In order to find the frequent word meaning sequences, we need to check and collect the

counts of synsets and their hyponyms/hypernyms, i.e. SLs, instead of just matching the

word meaning unions. For instance, when we check MU 2 of d′
1, there are two SLs in MU 2:

{SS3 → SS8} and {SS9 → SS10}. Let’s denote them by SLA and SLB, respectively. We

record SLA and SLB as unique meaning unions and increase their counts by one, respectively.

When MU 6 of d′
2 is checked, we meet SS8. Since SS8 is in SLA, we insert SS13 and SS6 into

SLA, and increase its count by one. In the same way, when we check MU 1 of d′
3, we meet

SS13 and insert SS12 into SLA and, increase its count by one again. Table 2.3 shows the

support counts of unique meaning unions (as SLs) in database D′ after we checked all three

documents. SLC and SLA are frequent meaning unions and {SLC , SLA} is a frequent set of

2 meaning unions. The synsets in these frequent meaning unions are called frequent synsets.

In this example, the frequent synsets are SS1, SS2, SS4, SS5, SS3, SS8, SS12, SS6, and

SS13.

SL Synsets with Hyponyms/Hypernyms Support Count Document Ids

SLC {SS1, SS2, SS4} → SS5 2 1, 2
SLA {{SS3 → SS8}, SS12, SS6} → SS13 3 1, 2, 3
SLD SS7 → SS11 1 2
SLB SS9 → SS10 1 1
SLE SS14 → SS15 1 3
SLF SS16 → SS17 1 3

Table 2.3: Support counts of the meaning unions in database D′

After finding the frequent sets of 2 meaning unions, in order to reduce each document into

a compact document, we remove the meaning unions which do not contain a frequent synset,

and replace each meaning union containing a frequent synset with the frequent meaning union

containing that frequent synset. Thus, each resulting compact document contains only the
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frequent meaning unions. In our example, the resulting database D′′ is composed of compact

documents d′′
1, d′′

2, and d′′
3:

• d′′
1 =< SLC , SLA, SLC >

• d′′
2 =< SLC , SLA >

• d′′
3 =< SLA >

Then, we can build the Generalized Suffix Tree (GST) for the compact documents and

collect the cluster candidates the same way as in the CFWS algorithm described in Section

2.4 . By traversing the GST, the frequent meaning union sequences are found. They are

used to represent the frequent word meaning sequences and serve as the labels of the cluster

candidates collected. In our example case, a cluster candidate we can obtain is cc[FMS =

“SLC , SLA”, Ids = {1, 2}].

2.5.1.3 Combining the Cluster Candidates

The frequent word meaning sequences of a cluster candidate describe the topics those docu-

ments cover. When we combine the cluster candidates, we don’t need to use the k-mismatch

concept used in the CFWS algorithm. The reason is because the cluster candidates we found

are general enough since word meanings were used, instead of word forms. We only need to

check the overlapping between cluster candidates, as in CFWS.

2.6 Experimental Evaluation

In this section, we evaluate the performance of our text clustering algorithm in terms of

the scalability of finding frequent word sequences and the accuracy of clustering. We imple-

mented our algorithm in C++ on a SuSE Linux PC with a Celeron 500 MHz processor and

384 MB memory.
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2.6.1 Data Sets

For the performance evaluation, two groups of data sets are used. One group is typical text

document sets which were widely used in text clustering researches. They are different in

terms of document size, cluster size, number of classes, dimension of database and document

distribution. We chose this group of data sets to test our algorithms’ performance on typical

text documents. There are six data sets in this group. They are Re1, Re2 and Re3 from

Exchanges, Organizations and People categories of the Reuters-21578 Distribution 1.0 [55],

and Ce1, Ce2 and Ce3 from the CISI abstracts of Classic database [9].

Another group of data sets were prepared by us. We tried to simulate the case of using a

search engine to retrieve the desired documents from a database, and we adopted the Lemur

Toolkit [37] as the search engine. The English newswire corpus of the HARD track of the

Text Retrieval Conference (TREC) 2004 [27] is used as the database. This corpus includes

about 652,309 documents (in 1575 MB) from 8 different sources. The user queries were sent

to the search engine, and the top 200 results of these queries were collected and classified as

the data sets, denoted by Se1, Se2, and Se3, for our evaluation. The reason why we chose

only top 200 documents is that usually users do not read more than 200 documents for a

single query.

Each document of the test data sets has been pre-classified into one or more classes. This

information is hidden during the clustering processes and used to evaluate the clustering

quality of each clustering algorithm in terms of the accuracy. Table 2.4 summarizes the

characteristics of all the data sets used for our experiments.

2.6.2 Evaluation of the Finding Frequent Word Sequences

We evaluated our method of finding frequent word sequences in terms of its scalability.

The whole mining process has two steps: finding frequent 2-word sets, then building and

traversing the GST. Any frequent itemset mining algorithm can be used to find frequent

2-word sets in our method. In our experiment, we adopted Apriori algorithm [1], which is

the most representative frequent itemset mining algorithm. There are many other frequent
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Data Num. Num. Min. Max. Avg. Num. of Avg. Num. of

Set of of Class Class Class Unique Doc. Total

Doc. Classes Size Size Size Terms Length Terms

Re1 340 7 28 97 53 3,368 69 24,414
Re2 807 9 20 349 98 6,488 144 116,816
Re3 797 15 20 168 62 5,466 108 86,744
Ce1 262 4 56 144 93 2,224 64 16,944
Ce2 355 4 70 146 108 2,633 65 23,070
Ce3 178 4 35 117 65 2,102 60 11,639
Se1 200 3 44 92 66 8,998 329 65,868
Se2 200 4 20 98 54 12,368 736 147,390
Se3 200 3 18 152 70 9,301 940 188,047

Table 2.4: Summary of data sets used for experiments

itemset mining algorithms proposed [29], but there isn’t much difference in their performance

to find only frequent 2-itemsets. The efficiency of Apriori is sensitive to the minimum support

level. When the minimum support is decreased, the runtime of Apriori increases as there

are more frequent itemsets.

The most time-consuming part is building and traversing the GST. As reported in [24, 62],

the GST construction time can be linear with the size of the whole database, and it can be

constructed incrementally as the documents are read from files. The number of unique

words affects the creation and traverse times of the GST. Thus, by keeping only the frequent

words in the database, the construction of the GST of large text databases becomes more

feasible. In our method, the size of whole database is dramatically reduced by removing

infrequent words from the documents. For example, the Re1 data set has 807 documents

with 116,816 total words and 6488 unique words. Its average document size and length

are 1.4 MB and 144, respectively. The Apriori algorithm finds 1049 frequent 2-word sets

with 175 unique words when the minimum support is 10%. After removing the infrequent

words from the documents, the total number of words is reduced to 52,792, and the average

document length is reduced to 51. Documents in Re2 are about organizations. By using our

method, 64 frequent word sequences are found when the minimum support is 5%. Some of
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them are listed in Table 2.5, and they represent the topics of the data set very well.

Frequent Word Sequence Support

(after stemmed) Count

world bank 113
oil price 73
export quota 49
intern monetari fund 101
west germani 112
financ minist 82
ec commiss 91
cooper develop 49
european currenc 66
agricultur minist 43
tariff trade 96

Table 2.5: Some frequent word sequences in the Re2 data set
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 Figure 2.3: Scalability of finding frequent word sequences wrt the data set size

Even though the construction time of the GST is reduced dramatically when the compact

documents are used, there is a trade-off between the construction time and the memory space

requirement when the GST is large. When the average length of the compact documents

is big, we may have the memory bottleneck problem as the GST size becomes larger than

the available memory size. To handle this problem, many efficient in-memory suffix tree

construction algorithms were proposed [16, 17, 35, 44].

Since the number of unique words in text databases is relatively large, we used a hash
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table in our implementation for efficient searching of the child nodes during the construction

of the GST. In order to test the scalability of our method, we increased the number of

documents in the test data set by duplicating Re1, Re2 and Re3, and the execution time is

plotted against the data set size in Figure 2.3. As we can see, the execution time increases

linearly with the data set size.

We also tested our method for various minimum support levels, and the result is shown

in Figure 2.4. As the minimum support level is increased, the execution time decreases since

less frequent 2-word sets are found, and it leads to a smaller GST. From these experimental

results, we can conclude that our method of finding frequent word sequences is very scalable.
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Figure 2.4: Scalability of finding frequent word sequences wrt the minimum support

2.6.3 Evaluation Method of the Text Clustering

We used the F-measure and purity values to evaluate the accuracy of our clustering algo-

rithm. The F-measure is a harmonic combination of the precision and recall values used in

information retrieval [56]. As we described how our data sets were prepared in Section 2.6.1,

each cluster obtained can be considered as the result of a query, whereas each pre-classified

set of documents can be considered as the desired set of documents for that query. Thus,

we can calculate the recall R(i, j) and precision P (i, j) of each cluster j for each class i.

If nij is the number of the members of class i in cluster j, nj is the number of the members

of cluster j, and ni is the number of the members of class i, then R(i, j) and P (i, j) can be
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defined as follows:

R(i, j) =
nij

ni

(2.2)

P (i, j) =
nij

nj

(2.3)

The corresponding F-measure F (i, j) is defined as:

F (i, j) =
2 ∗ R(i, j) ∗ P (i, j)

R(i, j) + P (i, j)
(2.4)

Then, the F-measure for the whole clustering result is defined as

F =
∑

i

ni

n
max

j
(F (i, j)) (2.5)

where n is the total number of documents in the collection. In general, the larger the

F-measure is, the better the clustering is [59].

The purity of a cluster represents the fraction of the cluster corresponding to the largest

class of documents assigned to that cluster, thus the purity of a cluster j is defined as:

Purity(j) =
1

nj

max
i

(nij) (2.6)

The overall purity of the clustering is a weighted sum of the cluster purities:

Purity(C) =
∑

j

nj

n
Purity(j) (2.7)

In general, the larger the purity value is, the better the clustering is [71].

2.6.4 Comparison of CFWS and CFWMS with Other Algorithms

For a comparison with our CFWS and CFWMS, we also executed bisecting k-means and

FIHC on the same data sets. We chose bisecting k-means because it has been reported

to produce a better clustering result consistently compared to k-means and agglomerative

hierarchical clustering algorithms [59]. FIHC is chosen because, like CFWS, it uses frequent

word sets. For a fair comparison, we did not implement the bisecting k-means and FIHC

algorithms by ourselves. We downloaded the CLUTO toolkit [10] to perform the bisecting

k-means, and obtained FIHC version 1.0 [19] from the inventor of FIHC.

34



Data sets were preprocessed before they were used in our experiments. The first step is to

remove the stop words from the documents. Then for CFWS, bisecting k-means and FIHC

algorithms, the words are stemmed by using the Porter’s suffix-stripping algorithm [59]. It

is important to do the stemming since it can eliminate the minor difference between words

with the identical meaning. For CFWMS, we used the WordNet ontology to convert word

forms to word meanings. As a result, the dimension of text database is reduced further, and

Figure 2.5 shows the changes of the dimension in test data sets.
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Figure 2.5: Dimensionality changes after applying WordNet

Table 2.6 shows the F-measures of four algorithms: bisecting k-means, FIHC, CFWS and

CFWMS. For the bisecting k-means algorithm, we specified the desired number of clusters to

be same as the number of the classes in each data set. FIHC, CFWS and CFWMS do not take

the number of clusters as an input parameter, and we specified the same minimum support

level for them, in the range of 5–15%, for a fair comparison. Based on the F-measures, it is

clear that our CFWS and CFWMS algorithms consistently outperform two other algorithms

on the sets of typical text documents as well as on the sets of search query results. For

CFWS and CFWMS, the overlapping threshold value δ for the merging of clusters was 0.5,

and Figure 2.6 shows the effect δ on the F-measure of CFWS. As we can see, the F-measure

is not sensitive if δ is higher than 0.5.

The F-measure represents the clustering accuracy. Our two algorithms have better F-

measures because we use a better model for text documents. Both bisecting k-means and

FIHC use the vector space model for text documents. However, the vector space model
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 Figure 2.6: Effect of the overlapping threshold δ on the F-measure of CFWS

cannot capture the order of words, which is important in representing the context in the

text document. On the contrary, our model stores the words as well as their orders, which

provide more valuable information for clustering.

Data Bisecting FIHC CFWS CFWMS

Set k-means

Re1 0.606 0.506 0.651 0.721
Re2 0.677 0.740 0.790 0.790
Re3 0.675 0.390 0.703 0.701
Ce1 0.430 0.506 0.541 0.550
Ce2 0.466 0.460 0.480 0.480
Ce3 0.489 0.515 0.540 0.604
Se1 0.611 0.664 0.705 0.711
Se2 0.529 0.461 0.689 0.710
Se3 0.716 0.759 0.800 0.806

Table 2.6: F-measures of the clustering algorithms

Both CFWS and FIHC use the frequent words to cluster documents, and FIHC’s measure-

ment of the closeness between clusters is similar to ours. However, FIHC uses the frequent

word sets to cluster documents, whereas CFWS uses the frequent word sequences. If a word

is a member of a frequent k-word sequence, it must be a member of a frequent k-word set.

But a member of a frequent k-word set is not necessarily a member of a frequent k-word

sequence. It is also true that a frequent k-word set is not necessarily a frequent k-word
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sequence. As a result, FIHC has a higher probability of grouping unrelated documents into

the same cluster. CFWMS has better F-mesures than CFWS in most cases because it can

identify the same word meaning sequences represented by different word form sequences.

Data Bisecting FIHC CFWS CFWMS

Set k-means

Re1 0.622 0.527 0.749 0.751
Re2 0.796 0.652 0.679 0.810
Re3 0.777 0.444 0.504 0.675
Ce1 0.640 0.605 0.620 0.635
Ce2 0.690 0.585 0.601 0.637
Ce3 0.790 0.692 0.702 0.775
Se1 0.62 0.66 0.703 0.803
Se2 0.695 0.563 0.714 0.789
Se3 0.837 0.84 0.851 0.852

Table 2.7: Purity values of the clustering algorithms

Table 2.7 shows the purity values of the four clustering algorithms. As we can see,

bisecting k-means performs better than both FIHC and CFWS for almost all of the typical

text document sets: Re1, Re2, Re3, Ce1, Ce2 and Ce3. The reason is that people may

use different words to express the same meaning, but both FIHC and CFWS perform the

exact word matching during the procedure of finding frequent word sets and sequences,

respectively. Our CFWMS algorithm is designed to solve this problem. In CFWMS, we first

apply an ontology, WordNet, to convert word forms to word meanings. Then, we match the

word meanings instead of word forms. The frequent word meaning sequences are used as the

measurement of the closeness between documents in CFWMS. In typical text documents, the

same word meanings may not be expressed by the same word forms because synonyms and

polysemous words are used. By using WordNet, the lexical and semantic relations between

word forms and word meanings are explored. The word meanings expressed by different word

forms are also captured successfully in our CFWMS algorithm. Moreover, the topics covered

in the typical text documents are represented by the frequent word meaning sequences.

For the search query results (i.e., Se1, Se2 and Se3), CFWS performs better than bisect-
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ing k-means and FIHC. The unique characteristics of these document sets can explain the

performance results. These document sets were obtained from the retrieval lists of a search

engine for user queries. We used the simple TFIDF retrieval model of the Lemur Toolkit to

perform the retrieval for each query. The documents obtained from this retrieval model are

more likely to have common words between them compared to the typical text documents.

In other words, the topics covered by this type of document sets are much closer than those

of the typical documents. For example, top 200 documents on the retrieval list for the query

of “tea consumption increased in US” cover 3 topics: “tea consumption”, “tea industry” and

“unrelated issues, such as drinking problem, sports, etc.” By specifying a lower minimum

support level, we can obtain finer clusters to cover the subtopics in the data set, which are

shown in Table 2.8.

class subclasses

tea consumption good for health; tea drinking culture; tea popularity
tea industry tea growing issues; tea export issues; tea auction issues
unrelated issues sports; drinking problem; others

Table 2.8: Classification of the Se1 data set

For this type of data sets, our CFWS algorithm can work better as it can group the

documents into much finer clusters. The reason is that our algorithm can tell the minor

differences among subtopics by recognizing frequent word sequences in the documents. By

clustering the retrieved documents, our CFWS algorithm enables the web search engines

to provide more accurate search results to the user. The purity values show that CFWMS

can improve the quality of the clustering for both typical text documents and search query

results.

2.7 Conclusion

In this chapter, first we proposed a new text document clustering algorithm named CFWS,

which stands for Clustering based on Frequent Word Sequences. Unlike the traditional
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vector space model, our model utilizes the sequential patterns of the words in the document.

Frequent word sequences discovered from the document set can represent the topics covered

by the documents very well, and the documents containing the same frequent word sequences

are clustered together in our algorithm.

To facilitate the discovery of the frequent word sequences from documents, we use the

Generalized Suffix Tree (GST) built on the frequent words within each document. The

performance of our frequent word sequence mining algorithm is quite scalable. For very

large data sets, we can adopt some of the efficient in-memory GST construction algorithms

proposed [16, 17, 35, 44].

Most existing clustering algorithms do not satisfy the unique requirements of the text

document clustering, such as handling high dimension and context-sensitive languages, and

providing overlapped clusters and self-explanatory labels of the clusters. Our CFWS algo-

rithm explores unique characteristics of text documents by using the frequent word sequences

to reduce the high dimension of the documents and to measure the closeness between them.

Our experimental results show that CFWS performs better than other clustering algorithms

in terms of accuracy, especially for the fine clustering of documents in the same category,

which is a very useful feature for modern web search engines.

Then, we proposed another new text document clustering algorithm named CFWMS,

which stands for Clustering based on Frequent Word Meaning Sequences. CFWMS en-

hanced CFWS by using frequent word meaning sequences to measure the closeness between

documents. Frequent word meaning sequences can capture the topics of documents more

precisely than frequent word sequences. To find frequent word meaning sequences, we used

the synonyms, hyponyms and hypernyms provided by the WordNet ontology to preprocess

the documents. CFWMS has a better accuracy than CFWS on most of our test data sets.
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Chapter 3

Text Clustering with Feature
Selection By Using Statistical Data

3.1 Introduction

How to explore and utilize the huge amount of text documents is a major question in the

areas of information retrieval and text mining. Document clustering is one of the most

important text mining methods, which are developed to help users to effectively navigate,

summarize, and organize text documents. By organizing a large amount of documents into

a number of meaningful clusters, document clustering can be used to browse a collection

of documents or organize the results returned by a search engine in response to a user’s

query. It can significantly improve the precision and recall in information retrieval systems

[56], and it is an efficient way to find the nearest neighbors of a document [8]. The problem

of document clustering is generally defined as follows: given a set of documents, we would

like to partition them into a predetermined or an automatically derived number of clusters,

such that the documents assigned to each cluster are more similar to each other than the

documents assigned to the other clusters. In other words, the documents in one cluster share

the same topic, and the documents in different clusters represent different topics.

In most existing document clustering algorithms, documents are represented using the

vector space model [56], which treats a document as a bag of words. A major characteristic

of this representation is the high dimensionality of the feature space, which imposes a big
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challenge to the performance of clustering algorithms. These algorithms could not work

efficiently in high dimensional feature spaces due to the inherent sparsity of the data [2].

Another problem is that not all features are important for document clustering. Some

of the features may be redundant or irrelevant. Some may even misguide the clustering

result, especially when there are more irrelevant features than relevant ones. In such case,

selecting a subset of original features often leads to a better clustering performance [40].

Feature selection not only reduces the high dimensionality of the feature space, but also

provides a better data understanding, which improves the clustering result. The selected

feature set should contain sufficient or more reliable information about the original data set.

For document clustering, this will be formulated into the problem of identifying the most

informative words within a set of documents for clustering.

Feature selection has been widely used in supervised learning, such as text classifica-

tion. It is reported that feature selection can improve the efficiency and accuracy of text

classification algorithms by removing redundant and irrelevant terms from the corpus [52].

Traditional feature selection methods for classification are either supervised or unsupervised,

depending on whether the class label information is required for each document. Those un-

supervised feature selection methods, such as the ones using document frequency and term

strength, can be easily applied to clustering [67]. But it is shown in [40] that supervised

feature selection methods using the information gain [54] and χ2 statistic can improve the

clustering performance better than unsupervised methods when the class labels of docu-

ments are available for the feature selection. However, supervised feature selection methods

cannot be directly applied to document clustering because usually the required class label

information is not available. In [40], an iterative feature selection method is proposed to

utilize supervised feature selection methods to select features iteratively and perform the

text clustering at the same time.

In many previous text mining and information retrieval researches, the χ2 term-category

independence test has been widely used for the feature selection in a separate preprocessing

step before the text categorization [52]. By ranking their χ2 statistic values, features that
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have strong dependency on the categories can be selected [40, 42], and this method is denoted

as CHI in this chapter.

In this chapter, we extended the χ2 independence test by introducing new statistical

data that can measure whether the dependency between a term and a category is positive

or negative. We also developed a new supervised feature selection method, named CHIR,

which is based on the χ2 statistic and the new term-category dependency measure. Unlike

CHI, CHIR selects features having strong positive dependency on the categories. In other

words, CHIR keeps only those features relevant to the categories. Furthermore, we explored

CHIR in text clustering, and developed a new text clustering algorithm, named TCFS, which

stands for Text Clustering with Feature Selection. TCFS iteratively performs the clustering

and the supervised feature selection, such as CHIR, alternately. Thus, the whole process

of TCFS is basically a learning process. While the information of the clusters is utilized to

find better features (i.e., terms), the quality of the clustering result is improved by reducing

the weight of irrelevant features. As the TCFS algorithm converges, both a good clustering

result and an informative feature subset are obtained.

Our experimental results demonstrated that the TCFS algorithm using the CHIR feature

selection method performs better than k-means, k-means with the Term Strength (TS)

feature selection method [40], and TCFS with CHI in terms of the accuracy of clustering

results for various real data sets.

The rest of this chapter is organized as follows. In Section 3.2, we describe the χ2

term-category independence test and the feature selection method CHI. Then, we propose

a new term-category measure and a new feature selection method CHIR. In Section 3.3, we

propose a high performance text clustering algorithm TCFS, which can adopt the feature

section method CHIR without knowing the class information of the documents in advance.

In Section 3.4, CHIR is compared with CHI in terms of the cluster cohesiveness, and the

clustering accuracy of TCFS with CHIR is compared with those of other clustering and

feature selection algorithms. Section 3.5 contains some conclusions, and Section 3.6 outlines

our future research topics.
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3.2 Feature Selection Based on χ2 Statistics

3.2.1 χ2 Term-Category Independence Test

In text mining and information retrieval, we often use the χ2 statistic to measure the degree

of the dependency between a term and a specific category. This is done by comparing

the observed co-occurrence frequencies in a 2-way contingency table with the frequencies

expected when they are assumed to be independent. Suppose that the corpus contains n

labeled documents and they fall into m categories. After the stop words removal and the

stemming, distinct terms are extracted from the corpus. We use an example to explain the

χ2 term-category independence test.

c ¬c
∑

w 40 80 120
¬w 60 320 380
∑

100 400 500

Table 3.1: A 2 × 2 term-category contingency table

Example 1: To analyze the relationship between a word w and a category c, we create

a two-way contingency table, shown as Table 3.1. The row variable, term, has two possible

values: {w,¬w}. The column variable, category, may take either one in {c,¬c}. Each cell

at the position (i, j), where i ∈ {w,¬w} and j ∈ {c,¬c}, contains the observed frequency,

denoted by O(i, j). For example, O(w, c) is the number of documents which are in the

category c and contain the term w, and O(¬w,¬c) is the number of documents which neither

belong to c nor contain w.

For the χ2 term-category independence test, we consider the null hypothesis and the

alternative hypothesis. The null hypothesis is that the two variables, term and category, are

independent of each other. On the other hand, the alternative hypothesis is that there is

some dependency between the two variables. To test the null hypothesis, we compare the

observed frequency with the expected frequency calculated under the assumption that the

null hypothesis is true. The expected frequency E(i, j) can be calculated as:
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E(i, j) =

∑
a∈{w,¬w} O(a, j) × ∑

b∈{c,¬c} O(i, b)

n
(3.1)

Using Equation 3.1, we get E(w, c) = 24, E(w,¬c) = 96, E(¬w, c) = 76, and E(¬w,¬c) =

304. The χ2 statistic is defined as:

χ2
w,c =

∑

i∈{w,¬w}

∑

j∈{c,¬c}

(O(i, j) − E(i, j))2

E(i, j)
(3.2)

Using Equation 3.2, we get χ2
x,c = 17.61. The degree of freedom is (2−1)×(2−1) = 1 for

our case. Looking up the tables of the χ2 distribution, we get the critical value χ2
0.001 = 10.83

for the confidence level 0.1%. Since χ2
0.001 is much smaller than 17.61, we reject the null

hypothesis. This can be explained as the divergence between the observed frequency and

the expected frequency is statistically significant. That means, it is very unlikely that the

divergence is just caused by the random sampling process. Thus, we reject the null hypothesis

and believe there is some dependency between w and c; i.e., the distribution of the term w

is related to the category.

As shown in Equation 3.2, if the difference between the observed frequency and the

expected frequency is bigger, then the χ2 statistic becomes bigger, and the word is more

informative for the category. This is the basic idea behind most previous researches on

the feature selection for text categorization. The feature selection method CHI could be

described as follows. For an m-ary classifier, we usually define the term-goodness of a term

w as either one of:

χ2
avg(w) =

m∑

j=1

p(cj)χ
2
w,cj

(3.3)

χ2
max(w) = max

j
{χ2

w,cj
} (3.4)

where p(cj) is the probability of the documents to be in the category cj. Then, the terms

whose term-goodness measure is lower than certain threshold value would be ignored in the

training of the classifier. It is reported in [52] that Equation 3.4 results better performance

than Equation 3.3. In some systems, the multi-class text categorization problem is reduced

to the training of a set of binary classifiers. For each binary classifier, a separate feature
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selection process is performed and χ2
w,c is directly used to measure the term-goodness of a

term w with respect to a class c.

3.2.2 New Term-Category Dependency Measure Rw,c

In our research, we found the feature selection method CHI does not fully explore all the

information provided by the χ2 term-category independence test. We will use an example

to point out where the problem is, and propose a new term-category dependency measure,

denoted by Rw,c, to fix this problem.

c ¬c
∑

w′ 60 320 380
¬w′ 40 80 120
∑

100 400 500

Table 3.2: Another 2 × 2 term-category contingency table

Example 2: Let’s compare Table 3.1 and Table 3.2. Using Equations 3.1 and 3.2, we can

find both tables produce the same χ2 statistic with χ2
w,c = χ2

w′,c = 17.61. This is interesting

because the two terms, w and w′, actually have quite different distributions in c and ¬c.

Based on Equation 3.4 and Table 3.1, we can see that there is positive dependency

between w and c because 40/100 = 2/5 of the documents in c contain w and 40/120 = 1/3

of the documents contain w are in c. That means, w is a typical word in category c, and

w is relevant to c. On the other hand, as shown in Table 3.2, it is not clear whether there

is positive dependency between w′ and c, because even though there are 60/100 = 3/5 of

the documents in c contain w′, only 60/380 = 3/19 of the documents containing w′ are in

c. In contrast, most documents in ¬c contain w′. Therefore, it is hard to believe that w′ is

relevant to the category c. Actually, we can say that there is negative dependency between

w′ and c.

The second example shows that using only the χ2 statistic based on Equation 3.4 might

make many errors in estimating how much a term is relevant to a category. To address this

problem, we define our criteria for the relevancy of a term w to a category c as: 1) χ2
w,c should
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be large, and 2) there should be some positive dependency between w and c. To evaluate

the positive dependency between a term and a category, we introduce a new measure, Rw,c,

defined as:

Rw,c =
O(w, c)

E(w, c)
(3.5)

As Rw,c is the ratio between O(w, c) and E(w, c), if there is no dependency between the

term w and the category c (i.e., χ2
w,c is not statistically significant), then Rw,c should be close

to 1. If there is positive dependency, then the observed frequency should be larger than the

expected frequency, hence Rw,c should be larger than 1. If there is negative dependency, Rw,c

should be smaller than 1. Only when χ2
w,c is statistically significant and Rw,c is larger than

1, we estimate that the term w is relevant to the category c. Using Equation 3.5, we get

Rw,c = 1.67 for Table 3.1 and Rw′,c = 0.79 for Table 3.2. Based on our criteria, the term w is

relevant to the category c, while the term w′ is irrelevant, which is a reasonable estimation.

From Equations 3.2 and 3.5, we can see the following relationship between χ2
w,c and Rw,c:

the farther Rw,c is from 1, either negatively or positively, the bigger is its contribution to χ2
w,c.

χ2
w,c is a summary of the whole contingency table and just tells if there is dependency between

a term and a category in distribution. But it cannot tell whether the dependency is positive

or negative. On the other hand, Rw,c tells the dependency more accurately. However, we

still need to use χ2
w,c to evaluate the dependency because our hypothesis test is based on the

theoretical χ2 distribution. By combining χ2
w,c and Rw,c, we can provide better information

about the relationship between a term and a category.

3.2.3 New Feature Selection Method CHIR

Recall that the feature selection method CHI uses Equation 3.3 or 3.4 as the term-goodness

measure to select the terms to be used for text categorization. Given n labeled documents

falling into m categories, the steps of CHI to select p terms are as follows after prepressing:

1. For each distinct term in the corpus, calculate its χ2 statistic value by using Equation

3.3 or 3.4.
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2. Sort the terms in descending order of their χ2 statistic values.

3. Select the top p terms from the list.

As we mentioned in Section 3.2.1, Equation 3.4 performs better in text categorization,

so we will use Equation 3.4 to calculate the χ2 statistic value for terms. In this way, CHI

selects only the terms, each of which has strong dependency on some category, no matter

the dependency is positive or negative.

c1 c2 c3

w1 d7 d1, d2, d3, d5

w2 d6, d7 d1, d2, d3, d5

w3 d6, d7 d1, d2, d5

w4 d2, d3

w5 d4

Table 3.3: 7 documents in 3 categories with 5 terms

Example 3: Let’s consider a set of 7 labeled documents, {d1, d2, . . . , d7}, falling into

3 categories, {c1, c2, c3}, as: c1 = {d6, d7}, c2 = {d1, d2, d3, d5} and c3 = {d4}. There are

total 5 distinct terms, {w1, w2, . . . , w5}, in the corpus, and the details are shown in Table

3.3. By following the steps of CHI, the χ2 statistic values of the terms are calculated as

shown in Table 3.4, where the maximum χ2 statistic value of each term is shown in bold.

By listing the terms in descending order of their maximum χ2 statistic values, we can obtain

(w5, w2, w1, w3, w4). If we select the top 3 terms from this list, {w5, w2, w1} will be chosen.

However, this selection has some serious problems. First, w2 is selected because it shows

strong dependency on c3, but actually w2 does not occur in any document in c3. The

strong dependency between w2 and c3, which is shown by the χ2 statistic, is their negative

dependency. Second, w4 is not selected even though it is a good feature for c2, as we can see

that w4 has strong dependency on c2 in Table 3.3. This example shows that CHI method

can remove the terms which are quite relevant to a category and does not provide enough

detail information about the relationship between the selected terms and the corresponding
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categories. To solve these problems, we propose a new feature selection method, named

CHIR.

c1 c2 c3

χ2
wi,c1

Rwi,c1 χ2
wi,c2

Rwi,c2 χ2
wi,c3

Rwi,c3

w1 0.630 0.700 3.733 1.400 2.917 0
w2 0.467 1.167 1.556 1.167 7.000 0
w3 1.120 1.400 0.058 1.050 2.917 0
w4 1.120 0 2.100 1.750 0.467 0
w5 0.467 0 1.556 0 7.000 7.000

Table 3.4: χ2 statistic and Rw,c values for 5 terms

Our new CHIR method enhances the CHI method by adding one step for checking the

Rw,c values. This step makes sure that χ2 statistic value assigned to each term represents

only the positive term-category dependency. In other words, CHIR selects the terms which

are relevant to categories and removes the irrelevant terms. The detail steps of CHIR to

select p terms are as follows:

1. For each distinct term wi,

(a) Calculate its χ2
wi,cj

value for each category cj by using Equation 3.2.

(b) Rank all χ2
wi,cj

values in descending order on a list L.

(c) Select the category cj which has the largest χ2
wi,cj

value, and check the correspond-

ing Rwi,cj
value (by using Equation 3.5) to determine whether its dependency is

positive or negative.

i. If the dependency is positive, assign the χ2
wi,cj

value as the χ2 statistic value

of wi.

ii. If the dependency is negative, remove χ2
wi,cj

from L.

(d) Repeat Step 1c until wi has its χ2 statistic value assigned.

2. Sort the terms in descending order of their χ2 statistic values on a list L′.
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3. Select the top p terms from L′.

For the term w2 in Example 3, as shown in Table 3.4, even though χ2
w2,c3

= 7 is the

largest among its χ2 statistic values, the corresponding Rw2,c3 = 0 shows that w2 has negative

dependency on c3. This is confirmed by the fact that w2 never occurs in c3 (see Table 3.3).

Thus, the χ2 statistic value of w2 should be 1.556 in our CHIR method. Similarly, another

term w3 also has a new χ2 statistic value 1.12 instead of 2.917. As a result, the new list

of terms becomes (w5, w1, w4, w2, w3), and if we select the top 3 terms, {w5, w1, w4} will

be selected. In Table 3.3, we can see that these 3 terms are relevant to the corresponding

categories, respectively, and they are better than the 3 terms, {w5, w2, w1}, selected by CHI.

3.3 Text Clustering with Feature Selection (TCFS) Al-

gorithm

As we discussed in Section 3.1, it is challenging to apply supervised feature selection methods

directly to text clustering because of the lack of the class label information of documents.

However, it is not impossible to adopt the supervised feature selection in text clustering

because the clusters obtained during the clustering process can provide valuable information

for the feature selection. The well-known Expectation-Maximization (EM) algorithm [14]

provides us a framework to combine the text clustering and supervised feature selection

methods. Based on the EM algorithm, we propose a new text clustering algorithm with

feature selection, named TCFS, which iteratively performs the clustering and the supervised

feature selection alternately. The whole process of TCFS is basically a learning process.

While the information of the clusters is utilized to find better features (i.e., terms), the

quality of the clustering result is improved by reducing the weight of irrelevant features. As

the TCFS algorithm converges, both a good clustering result and an informative feature

subset are obtained.

Recall that we defined the problem of text clustering as the grouping of documents with

similar topics into a cluster. By using the EM algorithm, we assume that each cluster of
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documents has a Gaussian distribution of terms. That means, a corpus with k clusters is

considered as a mixture of k Gaussian distributions. Given the parameters and our Gaussian

model, we maximize the likelihood of our data set. The maximum likelihood represents how

well our Gaussian model fits the data set. In this case, the clustering criterion for our TCFS

algorithm is the maximum likelihood, and a natural criterion for the feature selection also is

the maximum likelihood.

For text clustering, the likelihood function p(S|θ), which represents the probability that

a set S of n documents are grouped into k clusters when the parameter vector θ of the

Gaussian model is given, can be written as:

p(S|θ) =
n∏

i=1

k∑

j=1

p(cj|θ)p(di|cj, θ) (3.6)

where cj is the jth cluster, p(cj|θ) is the prior probability of the cluster cj for given θ, and

p(di|cj, θ) is the prior probability of the document di in the cluster cj for given θ. In the

EM framework for text clustering, the terms in documents are assumed to be conditionally

independent of each other, and the likelihood function can be rewritten as:

p(S|θ) =
n∏

i=1

k∑

j=1

(p(cj|θ)
∏

w∈di

p(w|cj, θ)) (3.7)

where p(w|cj, θ) is the conditional probability of the term w in the cluster cj. As we discussed

in Section 3.1, not all the terms (features) are equally relevant to the clusters, so p(w|cj, θ)

can be represented as:

p(w|cj, θ) = pr(w)p(w is relevant|cj, θ) + (1 − pr(w))p(w is irrelevant|cj, θ) (3.8)

where pr(w) is defined as the probability that the term w is relevant to the clusters, which

is determined by performing the feature selection [40]. EM produces a sequence of estimates

{θ̂(i) and p̂r(i), i = 0, 1, 2, . . .} by using the following two steps:

1. Expectation step (E-step): p̂r(i + 1) = E(pr|S, θ̂(i))

2. Maximization step (M-step): θ̂(i + 1) = arg maxθ p(S|θ, p̂r(i))
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In fact, the E-step is to perform the supervised feature selection by calculating the expected

feature relevancy for the current clustering result given, and the M-step is to re-cluster the

data set in the new feature space.

In our TCFS algorithm, we can adopt the proposed feature selection method CHIR into

the framework of EM. In the E-step, we use the CHIR method to estimate the relevancy

of each term to the clusters, then the probability of the term relevancy, pr(w), is set to

either 1 or f , where f is a predetermined factor in (0,1). That means, if a term relevancy

score calculated using the information obtained at each iteration is higher than a predefined

threshold value, the term is treated as a relevant one and untouched in the feature space.

Otherwise, the term is treated as irrelevant, and its weight is reduced by the factor of f ;

i.e., its new weight is obtained by multiplying the previous weight with f . The iterative

feature selection method proposed in [40] simply removes irrelevant terms based on the

relevancy score calculated at each iteration. The reason why we do not simply remove these

irrelevant terms from the feature space is that the information utilized by the supervised

feature selection method CHIR is not the real (i.e., final) class label information of the

documents. With the convergence of EM iterations, we are getting closer to the real class

label information. At the end of the iterations, we could select the terms with high relevancy

scores into the desired feature subset. Since the k-means clustering algorithm is considered

as an extension of EM for the hard threshold case [6], it could be used in the M-step to

cluster the documents in the new feature space.

The detail steps of our TCFS algorithm are as follows:

1. Perform a clustering algorithm, such as k-means, on the data set and get initial clusters.

2. Perform a feature selection method, such as CHIR, on the data set by using the current

clustering result as the class label information of the documents. The selected features

(i.e., terms) remain untouched in the feature space, but the weights of the unselected

features are reduced by f , where f is a predetermined factor in (0,1). (E-step)

3. Perform the clustering algorithm again on the data set in the new feature space. (M-
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step)

4. Repeat Steps 2 and 3 until convergence.

3.4 Experimental Results

In this section, first the proposed feature selection method CHIR is compared with CHI in

terms of cluster cohesiveness. Then, the proposed text clustering algorithm TCFS with CHIR

is compared with the k-means algorithm, the k-means algorithm with the Term Strength (TS)

feature selection method, and TCFS with CHI. The experimental results show that TCFS

with CHIR has the best clustering performance in terms of the accuracy of the clustering

result.

3.4.1 Data Sets

We used 7 test data sets from two different types of text databases, which have been widely

used by the researchers in the information retrieval area. Three data sets, denoted by CISI,

CACM and MED, are extracted from the CISI, CACM and MEDLINE abstracts, respec-

tively, which are included in the Classic database [9]. Additional four data sets, denoted by

EXC, ORG, PEO and TOP, are from the EXCHANGES, ORGS, PEOPLE and TOPICS

category sets of the Reuters-21578 Distribution 1.0 [55].

Each document of the test data sets has been pre-classified into one unique class. But,

this information was hidden during the clustering processes and just used to evaluate the

clustering accuracy of each clustering algorithm. Before the experiments, the stop words

removal and the stemming were performed as preprocessing steps on the data sets. Table

3.5 summarizes the characteristics of all the data sets used for our experiments.
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Data Num. Num. Min. Max. Num. Avg. Avg.

Set of of Class Class of Doc. Pairwise

Doc. Classes Size Size Unique Length Similarity

Terms by cosine

CISI 148 3 24 78 1,935 67 0.04
CACM 170 5 26 51 1,260 56 0.04
MED 287 9 26 39 4,255 77 0.02
EXC 334 7 28 97 3,258 67 0.03
ORG 733 9 20 349 6,172 138 0.03
PEO 694 15 11 143 5,046 102 0.04
TOP 2279 7 23 750 10,719 113 0.03

Table 3.5: Summary of data sets

3.4.2 Evaluation Methods

3.4.2.1 An Evaluation Method of the Feature Selection

We used the cohesiveness of clusters to measure the performance of CHI and CHIR feature

selection methods. The cohesiveness value of a cluster can be computed by using the weighed

sum of the similarities between documents in the cluster as follows [59]:

Cohesiveness(C) =
1

|C|2
∑

d∈C,d′∈C

cosine(d′, d) =
1

|C|
∑

d∈C

d • 1

|C|
∑

d∈C

d = c • c = ‖c‖2 (3.9)

where C represents the cluster, c is the centroid of the cluster, d and d′ are documents

in the cluster, and the cosine function is used to measure the pairwise similarity between

documents. From Equation 3.9, we can see that the square of the length of the centroid vector

is the average pairwise similarity between two documents in the cluster. This also includes the

similarity of each document with itself, which is one. We applied the CHIR and CHI feature

selection methods to the same clusters obtained by the k-means algorithm, respectively,

and compared the cohesiveness values of each cluster to compare the two methods. A

good feature selection method should eliminate irrelevant features while obtaining large

cohesiveness values of the clusters.
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3.4.2.2 Evaluation Methods of the Text Clustering

We used the F-measure and the entropy to evaluate the accuracy of the clustering algo-

rithms. The F-measure is a harmonic combination of the precision and recall values used in

information retrieval [56]. Since our data sets were prepared as described in Section 3.4.1,

each cluster obtained can be considered as the result of a query, whereas each pre-classified

set of documents can be considered as the desired set of documents for that query. Thus,

we can calculate the precision P (i, j) and recall R(i, j) of each cluster j for each class i.

If ni is the number of the members of class i, nj is the number of the members of cluster

j, and nij is the number of the members of class i in cluster j, then P (i, j) and R(i, j) can

be defined as:

R(i, j) =
nij

ni

(3.10)

P (i, j) =
nij

nj

(3.11)

The corresponding F-measure F (i, j) is defined as:

F (i, j) =
2 ∗ R(i, j) ∗ P (i, j)

R(i, j) + P (i, j)
(3.12)

Then, the F-measure for the whole clustering result is defined as

F =
∑

i

ni

n
max

j
(F (i, j)) (3.13)

where n is the total number of documents in the data set. In general, the larger the F-measure

is, the better the clustering result is [59].

The entropy is an external quality measure of a clustering algorithm. By comparing the

clustering result with known classes, this measure shows how good it is. For each cluster of

the clustering result, the class distribution of the data points is calculated first by computing

the probability that a member of cluster j belongs to class i, denoted by pij. Then, the

entropy of each cluster j is calculated as:

Ej = −
∑

i

pij log pij (3.14)
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The total entropy of all the clusters is the sum of the entropies of the clusters weighted by

their sizes:

E =
k∑

j=1

njEj

n
(3.15)

where nj is the size of cluster j, n is the total number of documents, and k is the number of

clusters. The smaller the entropy is, the purer the produced clusters are.

3.4.3 Comparison of the Feature Selection Methods

In order to compare our new feature selection method CHIR with CHI, the k-means algorithm

was used first to cluster each test data set. Then, we applied both CHIR and CHI to the

clusters of documents and checked the change of the cohesiveness value of each cluster. For

our implementation, we used the vector-space model to represent documents. In this model,

each document is represented by a vector of the frequencies of unique terms within the

document. Each document vector is normalized to have a unit length for the comparison of

documents with different lengths. In our experiment, the percentage of the selected features

(i.e., terms) was varied from 5% to 90%. At each round of feature selection, the unselected

terms were simply removed from the document vectors, then the document vectors are re-

normalized. For comparison, the cohesiveness value of every cluster was calculated and

recorded.

With fewer terms left in the feature space, the cohesiveness value of the cluster increases

because sparse features are removed and documents become more similar to each other.

When the feature selection method selects an appropriate feature subset, which represents

the cluster better than other subsets, the cohesiveness value is larger. For example, for the

cluster C1 of the CISI data set, when CHIR is performed with 5% of the features selected,

the cohesiveness value of this cluster is 0.221. When CHI is performed, the cohesiveness

value of C1 is 0.203. This result suggests that CHIR removes irrelevant features better than

CHI.

We applied the k-means algorithm on the CISI and EXC data sets and obtained 3 and 7

clusters, respectively. Then, we performed both CHIR and CHI on these clusters with differ-
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ent percentages of feature selection. The cohesiveness values of the clusters were compared,

and a part of the results are shown in Figures 3.1 and 3.2. Our experimental results show

that CHIR consistently outperforms CHI in terms of increasing the cohesiveness values of

the clusters.
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Figure 3.1: Cohesiveness values of three clusters of the CISI data set
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Figure 3.2: Cohesiveness values of three Clusters of the EXC data set

3.4.4 Comparison of the Clustering Algorithms

In [40], supervised and unsupervised feature selection methods are evaluated in terms of

improving the clustering quality by conducting experiments in the case that the class labels
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of documents are available for the feature selection. As a preprocessing step of text cluster-

ing, the Term Strength (TS) feature selection method was reported as the best among the

unsupervised feature selection methods evaluated in [40].

TS was originally proposed and evaluated for the vocabulary reduction in text retrieval

[65], and later applied to text categorization [67]. It is computed based on the conditional

probability that a term occurs in the second halves of a pair of related documents given that

it occurs in their first halves:

TS(w) = p(w ∈ dj | w ∈ di), di ∈ D, dj ∈ D and similarity(di, dj) ≥ δ (3.16)

≈ # of pairs in which w co-occurs in both documents

# of pairs in which w occurs in the first document
(3.17)

where δ is the parameter to determine the related document pairs. Since we need to calculate

the similarity of each document pair, the time complexity of calculating TS is quadratic of

the number of documents. As the class label information is not required, TS can be used for

the term reduction in text clustering. In this case, terms are ordered in descending order of

their TS values, and then a certain percentage of them are selected from the top to be used

for clustering.

In our experiments, we compared the clustering accuracies of TCFS with CHIR, TCFS

with CHI, k-means, and k-means with TS. When k-means is combined with the feature

selection method TS, TS was performed first as a preprocessing step, then k-means was

applied to the data set with the selected terms. δ was set to 0.1 for TS, and the percentage

of feature selection was varied in the range of [5%, 90%] for TS, CHI, and CHIR.

When we performed TCFS on the data sets, at each iteration, a certain percentage of

features was selected based on the feature selection method chosen — CHIR or CHI. As

described in Section 3.3, the relevancy of each term to the clusters is estimated based on

the information obtained at each iteration. The probability of the term relevancy is set to

either 1 or f , where f is a predetermined factor in (0,1). At each iteration, the weights of

the irrelevant terms are reduced by f in the feature space. In our experiments, we set f as

0.5.
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Figures 3.3, 3.4, 3.5 and 3.6 show the results of running TCFS with CHIR, TCFS with

CHI, k-means, and k-means with TS on the EXC and CISI data sets. In Figures 3.3 and

3.4, we can see that TCFS with either CHIR or CHI can achieve a better F-measure than

k-means with TS regardless of the percentage of feature selection. In TCFS, when more

terms are removed, the clustering result is better. The performance of k-means with TS is

not consistent as the percentage of feature selection changes. For example, when the top

25% terms are selected by TS, the F-measure is 0.3846, which is even lower than the case of

simply conducting k-means. This result shows that TS does not always select an appropriate

feature subset. In other words, TS may remove some relevant terms, while keeping some

irrelevant ones. The entropy values shown in Figures 3.5 and 3.6 suggest the same result.

0.37

0.39

0.41

0.43

0.45

0.47

0.49

0.51

0.53

0.55

0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Percentage of Feature Selection

F
-m

ea
su

re

TCFS-CHIR

TCFS-CHI

KM-TS

KM

 
Figure 3.3: F-measure of the clusters of the EXC data set

Tables 3.6 and 3.7 show the F-measure and entropy values of the clusters obtained by

running four clustering algorithms on 7 data sets. For TCFS with either CHIR or CHI, the

top 15% of the terms were selected at each iteration; and the top 15% of the terms were

selected once for k-means with TS. On the PEO data set, all four clustering algorithms

perform equally well. This could be explained by the fact that there are only few irrelevant

terms in the feature space of this data set. Except for this data set, TCFS with CHIR

performs better than other three algorithms.

Our experimental results demonstrate that the class label information obtained during
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Figure 3.4: Entropy value of the clusters of the EXC data set
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Figure 3.5: F-measure of the clusters of the CISI data set

the clustering process by performing a supervised feature selection method can be utilized to

improve the clustering accuracy. Moreover, our proposed TCFS with CHIR text clustering

algorithm generats much more accurate clusters than existing algorithms for different data

sets.

3.5 Conclusions

In this chapter, we introduced a new term-category dependency measure, denoted by Rw,c

which can tell whether the dependency is positive or negative. Based on the χ2 statistic and

Rw,c , we proposed a new supervised feature selection method CHIR. CHIR selects the terms
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Figure 3.6: Entropy values of the clusters of the CISI data set

Data KM KM with TCFS with TCFS with

Set TS CHI CHIR

CISI 0.461 0.460 0.513 0.585
CACM 0.552 0.561 0.632 0.695
MED 0.645 0.680 0.692 0.694
EXC 0.393 0.422 0.490 0.507
ORG 0.569 0.605 0.630 0.645
PEO 0.451 0.442 0.450 0.456
TOP 0.688 0.701 0.723 0.740

Table 3.6: F-measure (15% feature selection)

that are relevant to the categories by utilizing the known class label information. CHIR can

be used for text categorization, text summarization, and ontology creation.

We also proposed a new text clustering algorithm TCFS which performs a supervised

feature selection, such as CHIR and CHI, during the clustering process. The cluster label

information obtained during the clustering process is utilized as the known class label in-

formation for the feature selection. The selected features improve the quality of clustering

iteratively, and as the clustering process converges, the clustering result has higher accuracy.

TCFS with CHIR has been compared with other clustering and feature selection algorithms,

such as k-means, k-means with the Term Strength (TS) feature selection method, and TCFS

with CHI. Our experimental results show that TCFS with CHIR has better performance
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Data KM KM with TCFS with TCFS with

Set TS CHI CHIR

CISI 0.824 0.873 0.793 0.690
CACM 0.755 0.740 0.723 0.710
MED 0.444 0.421 0.372 0.366
EXC 0.728 0.665 0.622 0.557
ORG 0.304 0.300 0.281 0.275
PEO 0.504 0.469 0.556 0.504
TOP 0.343 0.303 0.298 0.270

Table 3.7: Entropy values (15% feature selection)

than other algorithms in terms of the clustering accuracy for different test data sets.

3.6 Future Works

3.6.1 Building Ontology

The semantic knowledge in the form of ontology is widely used to facilitate visualization,

summarization, and maintenance of large document repositories. Therefore, ontology has

been acknowledged as an important type of metadata, and many researches focus on ontol-

ogy building [60]. However, in many cases, the ontology building is still conducted manually,

which is time-consuming and labor-intensive. Thus, semiautomatic or fully automatic on-

tology building becomes very attractive. In [60], it has been shown how to extract a set of

candidate concept words for a domain ontology by using some feature selection techniques.

Unlike the TFIDF (term frequency inverse document frequency) framework, which reflects

only the frequency-based importance of a word, the statistical or information theoretical

measures used in the feature selection, such as χ2 statistics, Markov blanket [34], informa-

tion gain [54], and mutual information [11], can reflect the dependency between a word and

a category. In [60], experimental results show that χ2 statistic consistently outperform other

measures. We will propose a method to automatically generate concept words for ontology

building by combining χ2 statistic and Rw,c.
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3.6.2 Incremental Text Categorization

The naive Bayes classifier has been very popular in text categorization [43]. Unlike other

complex classifiers, such as the Support Vector Machine (SVM) [32] and the Maximum En-

tropy Model [50], which require a big computation overhead in training, the naive Bayes

classifier directly uses the frequency information of terms to calculate its model parameters.

Thus, the naive Bayes classifier is probably the best choice for incremental text categoriza-

tion, because we just need to store the required frequency information and update it when

new labeled documents are provided. Moreover, it has been shown that the performance

of the naive Bayes classifier can be comparable to that of other sophisticated classifiers,

even though it assumes the independence of features, which may be too strong. We plan to

develop an enhanced multinomial naive Bayes classifier by using the χ2 statistics and Rw,c

.
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Chapter 4

Text Document Clustering Based on
Neighbors

4.1 Introduction

How to explore and utilize the huge amount of text documents is a major question in the

areas of information retrieval and text mining. Document clustering is one of the most

important text mining methods, which are developed to help users to effectively navigate,

summarize, and organize text documents. By organizing a large amount of documents into

a number of meaningful clusters, document clustering can be used to browse a collection

of documents or organize the results returned by a search engine in response to a user’s

query. It can significantly improve the precision and recall in information retrieval systems

[56], and it is an efficient way to find the nearest neighbors of a document [8]. The problem

of document clustering is generally defined as follows: given a set of documents, we would

like to partition them into a predetermined or an automatically derived number of clusters,

such that the documents assigned to each cluster are more similar to each other than the

documents assigned to the other clusters. In other words, the documents in one cluster share

the same topic, and the documents in different clusters represent different topics.

There are two general categories of clustering methods: agglomerative hierarchical and

partitioning methods. In the previous researches, both of them are applied to text clustering.

Agglomerative hierarchical clustering (AHC) algorithms initially treat each document as a
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cluster, use different kinds of distance functions to compute the similarity between all pairs of

clusters, and then merge the closest pair [30]. This merging step is repeated until the desired

number of clusters is obtained. Comparing with the bottom-up method of AHC algorithms,

the family of k-means algorithms [13, 33, 36], which belong to the partitioning category,

create a one-level partitioning of the documents. The k-means algorithm is based on the

idea that a centroid can represent a cluster. After selecting k initial centroids, each document

is assigned to a cluster based on a distance measure, then k centroids are recalculated. This

step is repeated until an optimal set of k clusters are obtained based on a heuristic function.

For document clustering, Unweighted Pair Group Method with Arithmetic Mean (UP-

GMA) [30] of AHC is reported to be the most accurate one in its category. Bisecting k-means

is reported to outperform the k-means as well as the agglomerative approach in terms of ac-

curacy and efficiency. In bisecting k-means algorithm, initially the whole data set is treated

as a cluster. Based on a rule, it selects a cluster to split into two by using the basic k-means

algorithm. This bisecting step is repeated until the desired number of clusters is obtained.

Generally speaking, the partitional clustering algorithms are well-suited for the clustering of

large document databases due to their relatively low computational requirements and high

quality.

A key characteristic of the partitional clustering algorithms is that a global criterion

function is used, whose optimization drives the entire clustering process. The goal of this

criterion function is to optimize different aspects of intra-cluster similarity, inter-cluster

dissimilarity, and their combinations. A well-known similarity function is the cosine function,

which is widely used in document clustering algorithms and is reported performing very well

[59]. The cosine function can measure how similar two documents are, and when it is used in

the family of k-means algorithms, a document is assigned to a cluster with the most similar

cluster centroid in an effort to maximize the intra-cluster similarity.

Since the cosine function measures the similarity of two documents, only the pairwise

similarity is considered when we determine whether a document is assigned to a cluster or

not. However, when the clusters are not so well-separated, partitioning them just based on
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the pairwise similarity is not good enough because some documents in different clusters may

be similar to each other.

The concepts of neighbors and link are proposed in [26]. When two documents are similar

enough, they are considered as neighbors of each other. Every document can have a set of

neighbors in the data set for a certain similarity threshold. The link represents the number

of common neighbors between two data points [26]. For example, link(pi, pj) is the number

of common neighbors of two data points: pi and pj. In [26], the link function is used in an

agglomerative algorithm for clustering data with categorical attributes and obtained better

clusters than traditional algorithms.

Each text document can be viewed as a tuple with boolean attributes, where each at-

tribute corresponds to a unique term. An attribute value is true if the corresponding term

exists in the document. Since a boolean attribute is a special case of categorical attribute,

we could treat documents as data with categorical attributes. With this assumption, the

concepts of neighbors and link could provide valuable information about the documents in

the clustering process. We believe that the intra-cluster similarity should be measured not

only between the documents and the centroid, but also between their neighbors. The link

function can be used to enhance the evaluation of the closeness between documents because

it takes the information of surrounding documents into consideration.

The information about neighbors and link for all documents in a data set could be

represented by a neighbor matrix [26]. In this chapter, we propose the applications of the

neighbor matrix along with the cosine function in different aspects of the k-means and

bisecting k-means algorithms for clustering documents. The family of k-means algorithms

have two phases: initial clustering and cluster refinement [71]. The initial clustering phase

is the process of choosing a desired number (k) of initial centroids and assigning documents

to their closest centroids to form initial partitions. The cluster refinement phase is the

optimization process which adjusts the partitions by repeatedly calculating the new cluster

centroids based on the documents assigned to them and reassigning documents.

First, we propose a new method to select the initial centroids. It is well known that
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the performance of the family of k-means algorithms is very sensitive to the selection of

the initial centroids [30]. It’s very important that the initial centroids are distributed well

enough to attract sufficient nearby, topically related documents [36]. Our selection of the

initial centroids is based on the evaluation of three values: the pairwise similarity value

calculated by the cosine function, the link function value, and the number of neighbors of

documents in the data set. This combination helps us to find a group of initial centroids

with high quality.

Second, we explore a new clustering criterion function to determine the assignment of

each document to a cluster during the clustering refinement phase. This criterion function is

composed of the cosine and link functions. We believe that, besides the pairwise similarity,

involving documents in the neighborhood can improve the accuracy of closeness measurement

between documents.

Third, we create a new heuristic function for the bisecting k-means algorithm to select a

cluster to split. Unlike the k-means algorithm which splits the whole data set is split into k

subclusters at each iteration step, the bisecting k-means algorithm splits only one existing

cluster into 2 subclusters. Our selection of a cluster to split is based on the neighbors of

the centroids instead of the size of clusters because the concept of neighbors provides more

information about the intra-similarity of clusters.

We evaluated the performance of our proposed clustering algorithms on various real-life

data sets, and the experimental results demonstrated very significant improvement in the

accuracy of clustering.

The rest of this chapter is organized as follows: In Section 4.2, we will review the vector

space model of documents, the cosine function, the concept of neighbors, the link function,

and the k-means and the bisecting k-means algorithms. In Section 4.3, the applications

of the neighbor matrix in the k-means and bisecting k-means algorithms are described in

details. In Section 4.4, the experimental results of our clustering algorithms are compared

with those of original algorithms in terms of the accuracy of clustering. Section 4.5 contains

some conclusions.
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4.2 Background

4.2.1 Vector Space Model of Text Documents

For most existing document clustering algorithms, documents are represented by using the

vector space model [56]. In this model, each document d is considered to be a vector in the

term-space and represented by the term-frequency (TF) vector:

dtf = [tf1, tf2, . . . , tfm] (4.1)

where tfi is the frequency of the ith term in the document, and m is the dimension of

the text database, which is the total number of unique terms. Normally there are several

preprocessing steps, including the stop words removal and the stemming on the documents.

A widely used refinement to this model is to weight each term based on its inverse document

frequency (IDF) in the document collection. The idea is that terms appearing frequently in

many documents have limited discrimination power, so they need to be deemphasized [56].

This is commonly done by multiplying the frequency of each term i by log(N/dfi), where N

is the total number of documents in the collection, and dfi is the number of documents that

contain the ith term (i.e., document frequency). The following is the tf-idf representation

of the document:

dtf−idf = [tf1log(N/df1), tf2log(N/df2), . . . , tfmlog(N/dfm)] (4.2)

To account for documents of different lengths, the length of each document vector is

normalized so that it is of unit length (‖ddf−idf‖ = 1), and each document is a vector in the

unit hypersphere. In the rest of the chapter, we assume that this normalized vector space

model weighted by tf-idf is used to represent documents during the clustering.

Given a set Cj of documents and their corresponding vector representations, the centroid

vector cj is defined as

cj =
1

|Cj|
∑

d∈Cj

d (4.3)

where d is the document vector and |Cj| is the number of documents in the set Cj. The

centroid is in fact the vector obtained by averaging the weights of every term in the documents
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of Cj. It should be noted that even though the document vector d is of unit length, the

centroid vector cj is not necessarily of unit length.

4.2.2 Cosine Similarity Measure

For the problem of clustering documents, there are different criterion functions available.

The most commonly used is the cosine function [56]. For two documents di and dj, the

similarity between them can be calculated as:

cos(di, dj) =
dt

idj

‖di‖‖dj‖
(4.4)

Since the document vectors are of unit length, the above equation simplifies to:

cos(di, dj) = dt
idj (4.5)

The cosine value is 1 when two documents are identical, and 0 if there is nothing in

common between them (i.e., their document vectors are orthogonal to each other).

4.2.3 Neighbors and Link

The neighbors of a document d in a data set are those documents that are considered similar

to it [26]. Let sim(di, dj) be a similarity function capturing the pairwise similarity between

two documents di and dj, and have values between 0 and 1 with larger values indicating

higher similarity. For a given threshold θ, di and dj are defined as neighbors of each other if

sim(di, dj) ≥ θ, with 0 ≤ θ ≤ 1. (4.6)

Here θ is a user-defined threshold that can be used to control how similar a pair of

documents must be in order to be considered as neighbors of each other. If we use the cosine

as sim, sim is 1 for identical documents and 0 for totally dissimilar documents. When θ is

set to 1, a document is constrained to be a neighbor to only other identical documents. On

the other hand, 0 as the value of θ allows any arbitrary pair of documents to be neighbors.

Depending on the desired similarity for the application, the user can choose an appropriate

value for θ.
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The information about the neighbors of every document in the data set could be repre-

sented by a neighbor matrix. A neighbor matrix for a data set of n documents is an n × n

adjacency matrix M , in which entry M [i, j] is 1 or 0 depending on whether documents di

and dj are neighbors or not [26]. The number of neighbors of a document di in this data set

is the same as the number entries whose values are 1 in the ith of the matrix M . It could

be represented as follows:

N(di) =
n∑

m=1

M [i, m] ∗ A[m, 1] (4.7)

where A is a n × 1 matrix, in which all the entries are 1.

The link function, link(di, dj), is defined as the number of common neighbors between

di and dj [26]. The value of link(di, dj) can be obtained by multiplying the ith row with the

jth column of the neighbor matrix M :

link(di, dj) =
n∑

m=1

M [i, m] ∗ M [m, j]. (4.8)

This definition indicates that if link(di, dj) is large, then it is more probable that di and dj

are close enough to be in the same cluster.

Since the cosine considers only the features of two documents, it is a local approach for

clustering. Involving the link function could be considered as a global approach for clustering

[26], since it captures the global knowledge of neighbor documents into the relationship

between individual pairs of documents. Thus, the link function is also a good candidate for

measuring the closeness of two documents.

4.2.4 k-means and Bisecting k-means Algorithms for Document

Clustering

k-means is a popular algorithm to solve the problem of clustering a data set into k clusters.

If the data set contains n documents, d1, d2, . . . , dn, then the clustering is the optimization

process of grouping them into k clusters so that the global criterion function

k∑

j=1

n∑

i=1

f(di, cj) (4.9)
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is either minimized or maximized. cj represents the centroid of cluster Cj, for j = 1, . . . , k,

and f(di, cj) is the clustering criterion function for a document di and a centroid cj. When

the cosine is used, a document di is assigned to the cluster with the most similar centroid

cj, and the global criterion function is maximized as a result. This optimization process is

known as a NP-complete problem [23], and k-means algorithm was proposed to provide an

approximate solution [28]. The steps of k-means are as follows:

1. Select k initial cluster centroids.

2. For each document of the whole data set, compute the clustering criterion function

with each cluster centroid. Assign the document to its best choice. (assignment step)

3. Recalculate k centroids based on the documents assigned to them.

4. Repeat steps 2 and 3 until convergence.

The bisecting k-means [59] is a variant of the k-means algorithm. The key point of this

algorithm is that only one cluster is split into two subclusters at each step. This algorithm

starts with the whole data set as a single cluster, and its steps are as follows:

1. Select a cluster Cj to split based on a heuristic function.

2. Find 2 subclusters of Cj using the k-means algorithm: (bisecting step)

(a) Select 2 initial cluster centroids.

(b) For each document of Cj, compute the clustering criterion function with 2 cluster

centroids, and assign the document to its best choice. (assignment step)

(c) Recalculate 2 centroids based on the documents assigned to them.

(d) Repeat steps 2b and 2c until convergence.

3. Repeat step 2 I times, and select the split that produces the clustering satisfying the

global criterion function.
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4. Repeat steps 1, 2 and 3 until k clusters are obtained.

I is the number of iterations for each bisecting step, which is usually specified in advance.

4.3 Applications of the Neighbor Matrix in k-means

and Bisecting k-means Algorithms

4.3.1 Initial Centroids Selection Based on the Ranks

The family of k-means algorithms start with an initial partition, and documents are assigned

to the clusters iteratively in order to minimize or maximize the value of the global criterion

function. It is known that the clustering algorithms based on the iterative process are

computationally efficient but often converge to local minima or maxima of the global criterion

function. There is no guarantee that those algorithms will reach a global optimization. Since

different initial partitions can lead to different final clustering results, starting with a good

initial partition is one way to overcome this problem.

For document clustering, an initial partition is formed by specifying a set of k initial

centroids first and then assigning each document to the closest centroid. There are three

algorithms available for the selection of initial centroids: random, buckshot [13], and frac-

tionation [13]. The random algorithm randomly chooses k documents from the data set as

the initial centroids [30]. The buckshot algorithm picks
√

kn documents randomly from the

data set of n documents, and clusters them using a clustering algorithm. The k centroids

resulting from this clustering become the initial centroids. The fractionation algorithm splits

the documents into buckets of the same size, and the documents within each bucket are clus-

tered. Then these clusters are treated as if they are individual documents, and the whole

procedure is repeated until k clusters are obtained. The centroids of the resulting k clusters

become the initial centroids.

In this chapter, we propose a new method to select initial centroids based on the neighbor

matrix and the cosine function. Since the documents in one cluster are supposed to be

more similar to each other than the documents in different clusters, a good candidate for a
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initial centroid should not only be close enough to a certain group of documents but also

well separated from other centroids. By setting an appropriate similarity threshold, θ, the

number of neighbors of a document in the data set could be used to evaluate how many

documents are close enough to it. Since both cosine and link functions can measure the

similarity of two documents, here we use them together to evaluate the dissimilarity of two

documents.

First, by checking the neighbor matrix of the data set, we list documents in descending

order of the number of their neighbors. In order to find documents which are close enough

to a certain group of documents, the top m documents are selected from this list to form

a set of initial centroid candidates, denoted by Sm with m = k + nplus, where k is the

desired number of clusters and nplus is the extra number of candidates selected. Since these

m candidates have the most neighbors in the data set, we assume they are more likely the

centers of clusters.

For example, let’s consider a data set S containing 6 documents, S = {d1, d2, d3, d4, d5, d6},
whose neighbor matrix is as shown in Figure 4.1. When θ = 0.3, k = 3 and nplus = 1, Sm

has four documents: Sm = {d1, d2, d3, d4}.

d1 d2 d3 d4 d5 d6

d1 1 1 0 1 0 0
d2 1 1 0 1 0 0
d3 0 0 1 1 1 0
d4 1 1 1 1 0 0
d5 0 0 1 0 1 0
d6 0 0 0 0 0 1

Figure 4.1: Neighbor matrix (M) of data set S with θ = 0.3

Next, we obtain the cosine and link values between every pair of documents in Sm and

rank them in ascending order of the cosine values and the link values, respectively. For a pair

of documents, di and dj, let’s define rankcos(di,dj) be their rank based on the cosine values,

ranklink(di,dj) be their rank based on the link values, and rankdi,dj
be the sum of rankcos(di,dj)

and ranklink(di,dj). A pair of documents with smaller rank value has a higher rank, and 0 is
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the highest rank. The ranks of document pairs are shown in Table 4.1.

di, dj cos rankcos link ranklink rankdi,dj

d1, d2 0.35 2 3 3 5
d1, d3 0.10 1 1 0 1
d1, d4 0.40 3 3 3 6
d2, d3 0 0 1 0 0
d2, d4 0.50 4 3 3 7
d3, d4 0.60 5 2 2 7

Table 4.1: Similarity measurement between initial centroid candidates

Initial centroids better be far from each other in order to represent the whole data set.

Thus, the document pairs with high ranks could be considered good initial centroid candi-

dates. For the selection of k initial centroids out of m candidates, there are mCk possible

combinations. Each combination, comk, is a k-subset of Sm, and we calculate the rank value

of each combination comk as:

rankcomk
=

∑
rankdi,dj

, for di ∈ comk and dj ∈ comk (4.10)

This equation shows that the rank of a combination is the sum of the rank values of kC2

pairs of initial centroid candidate documents in the combination. In this case, there are 4

combinations available and their rank values are in Table 4.2.

comk kC2 pairs of document candidates rankcomk

{d1, d2, d3} {d1, d2}, {d1, d3}, {d2, d3} 6
{d1, d2, d4} {d1, d2}, {d1, d4}, {d2, d4} 18
{d1, d3, d4} {d1, d3}, {d1, d4}, {d3, d4} 14
{d2, d3, d4} {d2, d3}, {d2, d4}, {d3, d4} 14

Table 4.2: Ranks of the candidate sets of initial centroids

Then, we choose the combination with the highest rank as the set of initial centroids

for k-means algorithm. In this example, {d1, d2, d3} is chosen since the rank value of this

combination is 6, which is the highest rank among 4 different combinations. The documents
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in this combination are considered to be far from each other and also close enough to a group

of documents, so they can serve as the initial centroids of the k-means algorithm.

The effectiveness of this method depends on the selection of nplus and the distribution

of the cluster sizes. In Section 4.4.3.1, we will discuss how to select an appropriate nplus

to achieve the best clustering result. For those data sets having a large variation in cluster

sizes, the initial centroids selected by this proposed rank-based method may not distribute

over all the clusters, and some of them could be in a cluster with large size. Our experiments

showed that our proposed clustering criterion function described in the following Section

4.3.2 could be adopted to improve the clustering results of those data sets.

4.3.2 Clustering Criterion Based on the Cosine and Link

For document clustering, the cosine function is a very popular criterion function. It mea-

sures the similarity between two documents as the correlation between the document vectors

representing them. This correlation is quantified as the cosine value of the angle between

the two vectors. The larger cosine value indicates that these two documents share more

terms and are more similar. When the cosine function is adopted in the family of k-means

algorithms, the correlation between each pair of a document and a centroid is evaluated

during the assignment step.

However, the similarity measure based on the cosine function may not work well for some

document data sets. Usually, the number of unique terms in a document data set is very

large while the average number of unique terms in a document is much smaller. In addition,

documents that cover the same topic and belong to a single cluster may have a small subset

of terms within a much larger vocabulary of the topic. Here we give two examples to explain

this situation. The first example is regarding the topic and subtopic relationship. A cluster

with the topic of the family tree is related to a set of terms such as parents, brothers and

sisters, aunts and uncles, etc. Some documents in this cluster may focus on brothers and

sisters, and the rest covers other branches of the family tree. Thus, those documents do not

contain all the relevant terms listed above.
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Another example is about the usage of synonyms. Different terms are used in different

documents even if they are covering the same topic. Documents in a cluster of automobile

industry may not always use the same word to describe the car. There are many words

available for the same meaning, such as auto, automobile, vehicle, etc. Thus, it is quite

possible that a pair of documents in a cluster have few terms in common, but have connections

with other documents in the same cluster, and those documents have many common terms

with each of these two documents, respectively. In this case, the concept of link may help

us identify the closeness of two documents by checking their neighbors. When a document

di shares a group of terms with its neighbors, and a document dj shares another group of

terms with the same set of neighbors, even though these two documents, di and dj, are not

considered similar by the cosine function, the neighbors they share show how close they are.

Another fact is the sets of unique terms related to the topics of clusters may not have the

same size because, in real life, different subjects have their own vocabularies. In a cluster

involving a large vocabulary, since documents are spread out over a larger number of terms,

most document pairs will share few terms, and consequently only a small percentage of

document pairs would have a certain number of terms in common. Thus, when using the

cosine function, the similarity between a document and a centroid would be much smaller

because the centroid is by definition the mean vector of all the document vectors in the

cluster. Splitting a cluster related to a large vocabulary will increase the value of the global

criterion function. Since the cluster refinement phase of the k-means algorithm is the process

of maximizing the global criterion function when the cosine function is used for similarity

measure, it prefers to split the clusters with large vocabularies. However, this is not desirable

since documents in these clusters may be strongly related to each other. On the other hand,

if the global criterion function is based on the concept of link, which catches the information

about the connections of documents in a cluster in terms of the neighbors, a cluster will not be

split just because it has large vocabulary. If the documents in the cluster are strongly linked

(i.e., sharing a large number of neighbors), it will not be split regardless of its vocabulary

size. In other words, splitting the clusters with large vocabularies will not be favored because
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it will reduce the value of the global criterion function.

However, the link function may not perform well as the clustering criterion function by

itself. In the cluster refinement phase, if a document is assigned to the cluster whose centroid

shares the largest number of neighbors with this document (i.e., the largest link function

value), there is a high probability that this document is assigned to a large cluster than to

a small cluster. For a fixed similarity threshold θ, the centroid of a large cluster, say ci, has

more neighbors than the centroid of a small cluster, say cj. Thus, for a document d, it is

quite probable that link(d, ci) is larger than link(d, cj). The worst case scenario is that the

global criterion function is optimized when the whole data set is in one cluster while all the

other clusters are empty.

Based on these discussions, we propose a new clustering criterion function for the family

of k-means algorithms by combining the cosine and link functions as follows:

f(di, cj) = α ∗ link(di, cj)

Nmax

+ (1 − α) ∗ cos(di, cj), with α ∈ [0, 1] (4.11)

where Nmax is the largest possible value of link(di, cj), and α is the coefficient set by the

user. For the k-means algorithm, since all the documents in the data set are involved in the

whole clustering process, the largest possible value of link(di, cj) is the number of documents

in the data set (n), which means all the documents in the data set are neighbors of both di

and cj. For the bisecting k-means algorithm, only the documents in the selected cluster are

involved in each bisecting step. Thus, the largest possible value of link(di, cj) is the number

of documents in the selected cluster, say |Cj|. However, for both k-means and bisecting

k-means, the smallest value of link(di, cj) is zero, which means di and cj do not have any

common neighbors.

We use Nmax to normalize link values so that the value of link(di, cj)/Nmax always falls

in the range of [0, 1]. With α ∈ [0, 1], the value of f(di, cj) is between 0 and 1 for all the

cases. Equation 4.11 shows that we use the sum of weighted values of the cosine and link

functions to evaluate the closeness of two documents, and a larger value of f(di, cj) indicates

they are closer. When α is set to 0, the criterion function becomes the cosine function;
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and it becomes the link function when α is 1. In Section 4.4, we will use the experimental

results on test data sets to show the optimal choice of α for the best clustering result.

Since the cosine function and the link function evaluate the closeness of two documents in

different aspects, our new clustering criterion function is more comprehensive in measuring

the closeness between documents. During the clustering process, each document is assigned

iteratively to the cluster with the largest criterion function value, so that the global criterion

function is maximized.

d1 d2 d3 d4 d5 d6 c1 c2 c3

d1 1 1 0 1 0 0 1 0 0
d2 1 1 0 1 0 0 0 1 0
d3 0 0 1 1 1 0 0 0 1
d4 1 1 1 1 0 0 1 1 1
d5 0 0 1 0 1 0 0 0 1
d6 0 0 0 0 0 1 0 0 0

Figure 4.2: Expanded neighbor matrix (M ′) of data set S with θ = 0.3 and k = 3

When we calculate link(di, cj), we add k columns to the neighbor matrix M of the data

set. The new matrix is a n × (n + k) matrix, denoted by M ′, in which an entry M ′[i, n + j]

is 1 or 0 depending on whether a document di and a centroid cj are neighbors or not. The

expanded neighbor matrix for the example data set S is shown in Figure 4.2. The value of

link(di, cj) can be obtained by multiplying the ith row with the n + j column of M ′:

link(di, cj) =
n∑

m=1

M ′[i, m] ∗ M ′[m, n + j] (4.12)

4.3.3 Cluster Selection Based on the Neighbors of the Centroids

For the bisecting k-means algorithm, in each bisecting step, one existing cluster is selected

to be split based on a heuristic function. The basic goal of this function is to find an existing

cluster with the poorest quality. A cluster with poor quality means the documents in it

are not closely related to each other, and the bonds between them are weak. Therefore,

our selection of a cluster to split should base on the measurement of the compactness of
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clusters. In [59], the compactness of a cluster is measured by its overall similarity, the size

of the cluster, or the combination of both the size and the overall similarity. It has been

reported in [59] that the differences between them are small according to the final clustering

result. The authors recommended to split the largest remaining cluster. However, in our

experiment, we found that this method may not produce the best clustering result because

the size of a cluster is not necessarily a good measurement of its compactness.

When we choose between two clusters, one is loosely bound and the other is compact,

we should split the first one even if its size is smaller than that of the second one. The

concept of neighbors, which is based on the similarity of two documents, provides more

information about the compactness of a cluster than the size of the cluster. We create a

new heuristic function which compares the neighbors of the centroids of remaining clusters,

and our experimental results show that the performance of bisecting k-means is improved,

compared to the case of splitting the largest cluster.

Since we want to measure the compactness of a cluster, only the local neighbors of the

centroid are counted. In other words, we just count those documents that are similar to the

centroid and existing in that cluster. For a cluster Cj, a |Cj| × 1 matrix M ′
Cj

is created by

extracting all the entries M ′[i, n+ j] for di ∈ Cj. Then, the number of local neighbors of the

centroid cj is obtained by multipling two matrices as follows:

N(cj)local =
|Cj |∑

m=1

B[1, m] ∗ M ′
Cj

[m, 1] (4.13)

where B is a 1 × |Cj| matrix with all entries are set to 1. For the same cluster size and the

same similarity threshold θ, the centroid of a compact cluster should have more neighbors

than that of a loose cluster. By the definition of the centroid, when the similarity threshold

θ is fixed, the centroid of a large cluster tends to have more neighbors than that of a small

cluster. Thus, we divide the number of neighbors of the centroid by the size of the cluster

to get a normalized value, denoted by V (cj) for cj, which is always in the range of [0,1]:

V (cj) = N(cj)local/|Cj| (4.14)

In the cluster selection step, we choose the cluster with the smallest V value to split.
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4.4 Experimental Results

In order to show that the applications of neighbor matrix in k-means (KM) and bisecting

k-means (BKM) algorithms can improve the quality of document clustering, we ran the

modified k-means and bisecting k-means algorithms by using (1) the initial centroids selec-

tion based on the ranks, (2) the clustering criterion function based on the cosine and link

functions, (3) the selection of a cluster to split based on the neighbors of the centroids, re-

spectively as well as in combinations, on real-life document data sets. The clustering results

were compared with the original k-means and bisecting k-means algorithms. The time and

space complexities of the algorithms using the neighbor matrix are also discussed. We im-

plemented all the algorithms in C++ on a SuSE Linux PC with a 500 MHz processor and

384 MB memory.

4.4.1 Data Sets

We used 13 test data sets from three different types of text databases, which have been widely

used by the researchers in the information retrieval area. The first group of six data sets,

denoted by CISI1, CISI2, CISI3, CISI4, CACM1 and MED1, are extracted from the CISI,

CACM and MEDLINE abstracts, respectively, which are included in the Classic database

[9].

The second group of four data sets, denoted by EXC1, ORG1, PEO1 and TOP1, are are

from the EXCHANGES, ORGS, PEOPLE and TOPICS category sets of the Reuters-21578

Distribution 1.0 [55].

The third group of data sets is prepared by ourselves. We tried to simulate the case of

using a search engine to retrieve the desired documents from a database, and we adopted

the Lemur Toolkit [37] as the search engine. The English newswire corpus of the HARD

track of Text Retrieval Conference (TREC) 2004 [27] is used as the database. This corpus

includes about 652,309 documents (in 1575 MB) from 8 different sources, and there are 29

test queries. Among those 29 queries, HARD-306, HARD-309, HARD-314 queries were sent
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to the search engine and the top 200 results of these queries were collected and classified as

three data sets, denoted by SET1, SET2 and SET3, for our evaluation. The reason why we

choose only top 200 documents is that usually users do not read more than 200 documents

for a single query.

Each document of the test data has been pre-classified into one unique class. But, this

information is hidden during the clustering processes and just used to evaluate the clustering

accuracy of each clustering algorithm. Before the experiments, the stop words removal and

the stemming were performed as preprocessing steps on the data sets. Table 4.3 summarizes

the characteristics of all the data sets used for our experiments.

Data Num. Num. Min. Max. Num. Avg. Avg.

Set of of Class Class of Doc. Pairwise

Doc. Classes Size Size Unique Length Similarity

Term by cosine

CISI1 163 4 4 102 1,844 66 0.04
CISI2 282 4 31 92 2,371 63 0.04
CISI3 135 4 15 85 1,824 63 0.04
CISI4 148 3 24 78 1,935 67 0.04
CACM1 170 5 26 51 1,260 56 0.04
MED1 287 9 26 39 4,255 77 0.02
EXC1 334 7 28 97 3,258 67 0.03
ORG1 733 9 20 349 6,172 138 0.03
PEO1 694 15 11 143 5,046 102 0.04
TOP1 2279 7 23 750 10,719 113 0.03
SET1 200 4 18 88 9,301 940 0.06
SET2 200 3 44 92 8,998 664 0.05
SET3 200 4 10 81 12,368 1637 0.06

Table 4.3: Summary of data sets

4.4.2 Evaluation Methods of Text Clustering

We used the F-measure and purity values to evaluate the accuracy of our clustering algo-

rithms. The F-measure is a harmonic combination of the precision and recall values used

in information retrieval [56]. Since our data sets were prepared as described above, each

80



cluster obtained can be considered as the result of a query, whereas each pre-classified set of

documents can be considered as the desired set of documents for that query. Thus, we can

calculate the precision P (i, j) and recall R(i, j) of each cluster j for each class i.

If ni is the number of the members of class i, nj is the number of the members of cluster

j, and nij is the number of the members of class i in cluster j, then P (i, j) and R(i, j) can

be defined as:

P (i, j) =
nij

nj

(4.15)

R(i, j) =
nij

ni

(4.16)

The corresponding F-measure F (i, j) is defined as:

F (i, j) =
2 ∗ P (i, j) ∗ R(i, j)

P (i, j) + R(i, j)
(4.17)

Then, the F-measure for the whole clustering result is defined as:

F =
∑

i

ni

n
max

j
(F (i, j)) (4.18)

where n is the total number of documents in the collection. In general, the larger the

F-measure is, the better the clustering result is [59].

The purity of a cluster represents the fraction of the cluster corresponding to the largest

class of documents assigned to that cluster, thus the purity of a cluster j is defined as:

Purity(j) =
1

nj

max
i

(nij) (4.19)

The overall purity of the clustering is a weighted sum of the cluster purities:

Purity =
∑

j

nj

n
Purity(j) (4.20)

In general, the larger the purity value is, the better the clustering result is [71].

4.4.3 Clustering Results

Figures 4.3–4.6 show the F-measure values of the clustering results of all the algorithms on

13 data sets, and Tables 4.4 and 4.5 show the purity values of the clustering results. In the
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original k-means (KM) and bisecting k-means (BKM) algorithms, the random algorithm is

adopted for the initial centroids selection and the cosine function is used as the clustering

criterion function. For BKM, the largest cluster is selected to split at every bisecting step,

the iteration number for each bisecting step is set to 5. In the figures, Rank denotes that

the initial centroids are selected based on the ranks of the documents; CL denotes that the

clustering criterion function is based on the cosine and link functions; and NB denotes that

the selection of a cluster to split is based on the neighbors of the centroids. We ran each

algorithm 10 times to obtain the average result. The test results demonstrate that with

the applications of neighbor matrix on KM and BKM, the quality of clustering is improved

significantly.
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 Figure 4.3: Results of k-means algorithms on Classic data sets
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 Figure 4.4: Results of k-means algorithms on Reuters and Search Result data sets
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Figure 4.5: Results of bisecting k-means algorithms on Classic data sets
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 Figure 4.6: Results of bisecting k-means algorithms on Reuters and Search Result data sets

4.4.3.1 Results of Initial Centroids Selection Using the Ranks

From the test results, we can see that the initial centroids selection by by using the ranks of

documents performs much better than the random selection in terms of clustering quality.

Since our rank-based method selects k centroids from k + nplus candidates, the setting of

nplus is very important. If nplus is too small, our choice of initial centroids is limited to a small

set of documents. Even if these documents have the largest numbers of neighbors, which

indicates that they are close to a large amount of documents, they may not be distributed

evenly across the whole data set. The larger nplus will help us to find a better selection

of initial centroids. However, when the candidates set is too big, the computation cost is

high. We tried a series of nplus for KM and BKM to find the balance between the clustering

83



Data KM KM with KM with KM with

Set Rank CL Rank & CL

CISI1 0.534 0.546 0.595 0.625
CISI2 0.504 0.592 0.571 0.606
CISI3 0.760 0.822 0.785 0.778
CISI4 0.561 0.642 0.567 0.561
CACM1 0.593 0.689 0.696 0.800
MED1 0.652 0.693 0.742 0.756
EXC1 0.434 0.587 0.452 0.596
ORG1 0.711 0.744 0.727 0.769
PEO1 0.474 0.634 0.527 0.676
TOP1 0.759 0.803 0.808 0.818
SET1 0.525 0.545 0.545 0.545
SET2 0.495 0.710 0.675 0.720
SET3 0.590 0.700 0.645 0.695

Table 4.4: Purity values of k-means algorithms

quality and the computing cost. The test results show that for KM, within the range [0, k],

the larger nplus is, the better the clustering result is. This means, we select k initial centroids

from 2k candidates. And for BKM, the optimal range of nplus is [0, 4], regardless of k. This

is because only 2 initial centroids are needed at each bisecting step of BKM.

Our rank-based method involves several steps, which includes the creation of the neighbor

matrix, sorting the documents based on the number of neighbors, sorting k+nplus documents

based on the cosine and link values, and calculating the ranks of all candidate sets of initial

centroids. The time complexity of creating the neighbor matrix is O(n2) for the data set with

n documents, and that of sorting n documents based on their neighbor numbers is O(nlogn).

Comparing these two steps, the time complexity of sorting k + nplus documents based on

the similarity values and calculating the ranks of all candidate sets of initial centroids is

relatively small and can be ignored.
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Data BKM BKM with BKM with BKM with BKM with

Set Rank CL NB Rank, CL & NB

CISI1 0.595 0.607 0.607 0.619 0.619
CISI2 0.539 0.631 0.596 0.543 0.624
CISI3 0.755 0.815 0.763 0.756 0.807
CISI4 0.574 0.642 0.561 0.574 0.655
CACM1 0.689 0.778 0.733 0.689 0.793
MED1 0.711 0.689 0.812 0.777 0.899
EXC1 0.476 0.530 0.503 0.533 0.575
ORG1 0.727 0.754 0.753 0.749 0.754
PEO1 0.506 0.576 0.555 0.586 0.618
TOP1 0.839 0.856 0.830 0.866 0.866
SET1 0.535 0.570 0.545 0.535 0.575
SET2 0.620 0.690 0.630 0.625 0.655
SET3 0.700 0.699 0.699 0.700 0.700

Table 4.5: Purity values of bisecting k-means algorithms

4.4.3.2 Results of the Clustering Criterion Based on the Cosine and Link Func-
tions

The first step of our clustering criterion function based on the cosine and link is to determine

the neighbors of each document. When we check if two documents are neighbors, we need to

compare their similarity value with the threshold θ (refer to equation 4.6). In order to find

the right θ, we first tried the average pairwise similarity of the documents in the data set,
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Figure 4.7: Effect of the similarity threshold θ on the F-measure of k-means with CL
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Figure 4.8: Effect of the similarity threshold θ on the purity value of k-means with CL

but some results are good and others are not. Then, we tried the threshold θ between 0.02

and 0.5, and the effect of θ on the F-measure and purity values of k-means with CL on data

sets EXC1, CISI1 and SET2 is shown in Figures 4.7 and 4.8. We also performed this test

on other data sets, and the results are similar. As we can see, when θ is 0.1, we can achieve

the best clustering results. So, θ was set to 0.1 for all other experimental results reported in

in this chapter.

In our new clustering criterion function, we use the linear combination of cosine and

link functions to measure the closeness of two documents, as defined in equation 4.11. The

range of the coefficient α of the link function is [0,1]. We tried different coefficient values for

k-means with CL on data sets EXC1, CISI1 and SET2. The results shown in Figures 4.9

and 4.10 suggest that, when the coefficient is set between 0.8 and 0.95, the clustering results

are better than the case of using the cosine alone. The tests on other data sets showed

the same trend. We set the coefficient to 0.9 for other experimental results reported in this

chapter. This high optimal coefficient value can be explained by the fact that the link value

is calculated using the similarity value given by the cosine. In the other words, since the link

value contains the cosine value already, the weight of the cosine in the linear combination

should be smaller than that of the link.

The time complexity of our new clustering criterion function is determined by the com-

putation of the cosine and link functions. For k-means algorithm with the cosine function
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 Figure 4.9: Effect of the coefficient α on the F-measure of k-means with CL
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 Figure 4.10: Effect of the coefficient α on the purity value of k-means with CL

alone, the time complexity could be represented as:

Tcos = FnkdLt (4.21)

where F is a constant for the calculation of the cosine function, n is the number of documents

in data set, k is the desired number of clusters, d is the number of unique words in the data

set, L is the number of iterations of the loop in k-means, and t is the unit operation time

for all basic operations. The computation of the link function contains three parts: creating

the neighbor matrix, expanding the neighbor matrix with the columns of k centroids, and

calculating the link value for each document with every centroid at each loop. The time

complexity of creating the neighbor matrix could be represented as:

Tmatrix =
n2dt

2
(4.22)
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The neighbor matrix is created just once before the iteration of the loop; and at each

iteration, the n× n neighbor matrix is expanded into an n× (n + k) matrix for k centroids.

So, the computation for this expansion involves only the entries in those k columns:

Texpanding = F ′nkdLt (4.23)

where F ′ is a constant for the calculation of judging whether two documents are neigh-

bors. The calculation of link values for n documents with k centroids is an n × k matrix

multiplication as discussed in Section 4.3.2, and could be represented as:

Tlink = n2kdLt (4.24)

Thus, the time complexity of the new clustering criterion function is:

TCL = Tmatrix + Texpanding + Tlink + Tcos (4.25)

=
n2dt

2
+ F ′nkdLt + n2kdLt + FnkdLt (4.26)

=
1 + 2kL

2
n2dt + (F ′ + F )nkdLt (4.27)

From the above equations, we can see that for a data set containing n documents, the

time complexity of our new clustering criterion function is O(n2), which is computationally

acceptable.

By adopting the new clustering criterion function to KM and BKM, both algorithms

outperform the original ones on all 13 test data sets. We can conclude that this new criterion

function provides a more accurate measurement of the closeness between two documents.

4.4.3.3 Results of the Cluster Selection Based on the Neighbors of the Centroids

From the results shown in Figures 4.5 and 4.6 and Table 4.5, we find the new method of

selecting a cluster to split works very well on traditional document data sets—Classic and

Reuters. But there is only a slight improvement on the search result data sets in terms of

the F-measure, and the purity value of the clustering result is unchanged.

At each bisecting step, the original BKM splits the largest existing cluster. Our new

cluster selection method is based on the measurement of the compactness of clusters by
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using the neighbors of centroids. Since SET1, SET2, and SET3 data sets are simulated

search results, there are more terms shared between documents in these data sets. In the

other words, the documents in these data sets are more similar to each other than those in

traditional data sets. Table 4.3 shows that the average pairwise similarities of these data

sets (SET1, SET2, and SET3) are higher than those of others. Thus, the distribution of

clusters in the search result data sets are more balanced than those in traditional data sets.

This feature leads to the result that there is no big difference in the selection of a cluster to

split between two methods adopted.

The time complexity of bisecting k-means with NB is not much different from that of

selecting the largest cluster to split, because the cost of selecting a best cluster out of m,

(m < k), clusters to split based on the concept of link is very small.

The experimental results prove that our measurement of the compactness of clusters by

using the neighbors of centroids is more accurate than just using the cluster size . When

running BKM on data sets with unevenly distributed clusters, our cluster selection method

is much better.

4.4.3.4 Results of the Combination of the Proposed Methods
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 Figure 4.11: Average execution time per loop for k-means on EXC1 and SET2 data sets

We combined the three proposed methods of utilizing the neighbor matrix together and

ran the modified algorithms on all the test data sets. The results show that the combination
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achieves the best results on all the data sets. Since all of our proposed methods are based

on the same neighbor matrix, adopting all of them into one algorithm is computationally

quite reasonable. The average execution times per loop of k-means algorithms on EXC1 and

SET2 data sets are shown in Figure 4.11.

For most data sets, we found that the best clustering result obtained are close to the

result of using the ranks alone. It proves that the selection of initial centroids is critical

for the family of k-means algorithms. For those data sets having a large variation cluster

sizes, even if the selection of initial centroids is not good enough, the clustering result is

improved by adopting our new clustering criterion function based on the cosine and link

functions. An example of this case is CISI1 data set containing 163 documents, and its

maximum class size is 102 documents and the minimum class size is 4 documents. Figure

4.3 shows that for k-means, using the ranks of the documents (to select the initial centroids)

performs slightly better than the random selection as the F-measure values are 0.478 and

0.475, respectively. By adopting the new clustering criterion function, the clustering result is

improved as expected (F-measure value is 0.556), and the combination of these two methods

achieves much better clustering result (F-measure value is 0.5953).

4.5 Conclusions

In this chapter, we proposed three different applications of the neighbor matrix in k-means

and bisecting k-means clustering algorithms. The neighbor matrix of a text database provides

the number of neighbors and the link values for each document in the database. Comparing

with the local information given by the cosine function, the link function provides the global

view in evaluating the closeness between two documents by using the neighbor documents.

We enhanced k-means and bisecting k-means algorithms by using the ranks of documents

for the selection of initial centroids, by using the linear combination of the cosine and link

functions as a new criterion function for clustering, and by selecting a cluster to split based

on the neighbors of centroids. All these algorithms are compared with the original k-means

and bisecting k-means algorithms by running on real-life text data sets.
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Our experimental results showed that the clustering quality of k-means and bisecting

k-means algorithms is improved by adopting these new techniques. First, the test results

proved that the selection of initial centroids is critical to the clustering quality of k-means

and bisecting k-means. The initial centroids selected by our method are well distributed and

close to sufficient topically related documents, so they improve the clustering quality. Second,

the compactness of a cluster could be measured accurately by evaluating the neighbors of

the centroid of the cluster. Third, the test results showed that our new method of measuring

the closeness of two documents based on the combination of the pairwise similarity and

the connections of neighbor documents performs better than using the pairwise similarity

alone.
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Chapter 5

Parallel Bisecting K-Means with
Prediction Clustering Algorithm

5.1 Introduction

Today, every industry has a huge amount of data waiting for analysis. Data mining al-

gorithms play important roles in this process. Since data sets are measured in gigabytes,

sequential data mining algorithms cannot get the job done on a processor with limited mem-

ory. Parallel data mining algorithms can solve this problem by utilizing multiple processors

with more available memory.

Data clustering [28, 31] is an important process in data mining, and the k-means algo-

rithm [28] is one of the representative partitioning clustering algorithms [51]. The k-means

algorithm creates a one-level unnested partitioning of data points by iteratively partition-

ing the data set. If k is the desired number of clusters, in each iteration, the data set is

partitioned into k disjoint clusters. This process is continued until the specified clustering

criterion function value is optimized. It works well with a variety of probability distributions

[51]. Its simplicity of implementation, ease of interpretation, scalability, speed of conver-

gence and good clustering quality make k-means very popular. However, k-means has some

drawbacks, such as its sensitivity to the selection of initial centroids, convergence to sub-

optimal solutions and uncertainty of the number of iterations [31, 51]. A parallel k-means

(PK) algorithm is proposed in [15] based on the Single Program over Multiple Data streams
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(SPMD) parallel processing model and message-passing. This PK algorithm can achieve an

almost linear speedup.

Bisecting k-means [59] is a variant of k-means. Instead of partitioning the data set into k

clusters in each iteration, bisecting k-means algorithm splits one cluster into two subclusters

at each bisecting step (by using k-means) until k clusters are obtained. As bisecting k-

means is based on k-means, it keeps the merits of k-means, and also has some advantages

over k-means [59]. First, bisecting k-means is more efficient when k is large. For the k-

means algorithm, the computation of each iteration involves every data point of the data

set and k centroids. On the other hand, in each bisecting step of bisecting k-means, only

the data points of one cluster and two centroids are involved in the computation. Thus, the

computation time is reduced. Second, bisecting k-means tends to produce clusters of similar

sizes, while k-means is known to produce clusters of widely different sizes [59]. Moreover,

bisecting k-means produces clusters with smaller entropy (i.e., purer clusters) than k-means

does, as will be shown in Section 5.4.

In this chapter, we propose a new parallel bisecting k-means algorithm, named PBKP,

which adopts a prediction step to balance the workloads of multiple processors. We im-

plemented PBKP on a cluster of Linux workstations and analyzed its performance. Our

experimental results show that the speedup of PBKP is linear with the number of processors

and the number of data points, and it is more scalable than parallel k-means (PK) with

respect to the dimension and the desired number of clusters.

The rest of this chapter is organized as follows: In Section 5.2, the sequential k-means

(SK) and bisecting k-means (BK) algorithms are reviewed. In Section 5.3, the parallel k-

means (PK) algorithm proposed in [15] and our PBKP algorithm are described in details.

In Section 5.4, first the clustering qualities of SK, BK and PBKP are compared, then the

speedup and scaleup of PBKP are evaluated and compared with those of PK. The appli-

cability of bisecting k-means is also discussed. Section 5.5 contains some conclusions and a

future research topic.
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5.2 Sequential Algorithms

5.2.1 Sequential k-means (SK) Algorithm

k-means is a popular algorithm to solve the problem of clustering a data set into k clusters.

If the data set contains n data points, X1, X2, . . . , Xn, of dimension d, then the clustering

is the optimization process of grouping n data points into k clusters so that the following

global function is either minimized or maximized.

k∑

j=1

n∑

i=1

f(Xi, cj) (5.1)

cj represents the centroid of cluster Cj, for j = 1, . . . , k, and f(Xi, cj) is the clustering

criterion function for a data point Xi and a centroid cj. The goal of this function f(Xi, cj) is

to optimize different aspects of intra-cluster similarity, inter-cluster dissimilarity, and their

combinations [71]. For example, the Euclidean distance function minimizes the intra-cluster

dissimilarity. In that case, a data point Xi is assigned to the cluster with the closest centroid

cj, and the global function is minimized as a result. When the cosine similarity function is

used, a data point Xi is assigned to the cluster with the most similar centroid cj, and the

global function is maximized as a result.

This optimization process is known as a NP-complete problem [23], and the sequential

k-means (SK) algorithm was proposed to provide an approximate solution [28]. The steps

of SK are as follows:

1. Select k data points as initial cluster centroids.

2. For each data point of the whole data set, compute the clustering criterion function

with each centroid. Assign the data point to its best choice. (calculation step)

3. Recalculate k centroids based on the data points assigned to them. (update step)

4. Repeat steps 2 and 3 until convergence.

The computation complexity of SK is determined by the number of data points (n), the

dimension of the data point (d), the desired number of clusters (k), and the number of loops
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in SK (L). For a processor, we assume all the basic operations have the same unit operation

time (t). At each loop, the computation complexity of the calculation step is dominated

by the clustering criterion function, which has f(n, k, d) operations. For the update step,

recalculating the centroids needs kd operations. Thus, the time complexity of the whole

k-means algorithm is:

TSK = (f(n, k, d) + kd)Lt (5.2)

If the clustering criterion function is the Euclidean distance function, f(n, k, d) = 3nkd +

nk + nd [15]; and for the cosine similarity function, f(n, k, d) = 2nkd + nk + nd. Under the

assumption that the number of data points (n) is much larger than d and k, Equation (5.2)

could be rewritten as:

TSK = FnkdLt (5.3)

where F is a constant for the clustering criterion function used. SK is very sensitive to the

selection of initial centroids, and different initial centroids could produce different clustering

results. For the same initial centroids, each run of SK on the same data set always has the

same L.

5.2.2 Bisecting k-means (BK) Algorithm

The bisecting k-means (BK) [59] is a variant of the k-means algorithm. The key point of this

algorithm is that only one cluster is split into two subclusters at each step. This algorithm

starts with the whole data set as a single cluster, and its steps are:

1. Select a cluster Cj to split based on a rule.

2. Find 2 subclusters of Cj by using the k-means algorithm (bisecting step):

(a) Select 2 data points of Cj as initial cluster centroids.

(b) For each data point of Cj, compute the clustering criterion function with the 2

centroids, and assign the data point to its best choice. (calculation step)

(c) Recalculate 2 centroids based on the data points assigned to them. (update step)
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(d) Repeat steps 2b and 2c until convergence.

3. Repeat step 2 I times, and select the split that produces the clusters satisfying the

global function.

4. Repeat steps 1, 2 and 3 until k clusters are obtained.

I is the number of iterations for each bisecting step, which is usually specified in advance.

There are many different rules that we can use to determine which cluster to split, such as

selecting the largest cluster at the end of the previous iteration or based on the clustering

criterion function. However, it has been reported that the differences between them are

small according to the final clustering result [59]. In this chapter, we always split the largest

remaining cluster.

The computation complexity of BK is determined by the size of Cj at each bisecting step

(nj), the dimension of the data point (d), the desired number of clusters (k), the number of

loops of k-means in each bisecting step (L), and the number of iterations for each bisecting

step (I). In the bisecting step, f(nj, 2, d) operations are required for the calculation step,

and 2d operations for the centroids updating step. Since each bisecting step produces one

more cluster, total k − 1 bisecting steps are needed to produce k clusters. Thus, the time

complexity of BK can be represented as:

TBK = (f(nj, 2, d) + 2d)LI(k − 1)t (5.4)

where nj is the average size of Cj of each bisecting step, and L is the average number of

loops of k-means for each iteration of a bisecting step. Under the assumption that nj is much

larger than d and k, Equation (5.4) could be rewritten as:

TBK =
2F

k
njdLI(k − 1)t when nj ≤ n (5.5)

The comparison of two Equations (5.3) and (5.5) shows that, when k is large, BK is even

more efficient than k-means. The computation of each loop in k-means involves n and k,

while the computation of the iteration in each bisecting step of BK involves nj (nj ≤ n) and

2(k−1)
k

≈ 2 (when k is large).
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5.3 Design of Parallel Algorithms

5.3.1 Parallel k-means (PK) Algorithm

A parallel k-means (PK) algorithm is proposed in [15] based on the Single Program over

Multiple Data streams (SPMD) parallel processing model and message-passing. PK is easy

to implement and achieves a nearly linear speedup. The steps of PK are as follows:

1. Evenly distribute n data points to p processors so that each processor has np data

points in its disk, where np = n/p.

2. Select k data points as initial centroids, and broadcast them to the p processors.

3. Each processor calculates the clustering criterion function for each of its np data points

with each centroid of k clusters, and assigns each data point to its best choice. (calcu-

lation step)

4. Collect all the information needed from the p processors to update the global cluster

centroids, and broadcast it to the p processors. (update step)

5. Repeat steps 3 and 4 until convergence.

The strategy of this algorithm is to exploit the data-parallelism of the sequential k-

means (SK) algorithm. Step 2 of SK shows that the calculation of the clustering criterion

function for different data points could be done at the same time without affecting the final

result. Thus, by distributing n data points to p processors, these processors can execute

the calculation step on n/p data points at the same time. However, the trade-off is the

communication time in step 4 of PK. At the end of each loop, the information of k centroids

of dimension d is collected and then broadcast to p processors for the next loop’s calculation

step. The communication time is determined by k and d as:

Tcomm = MdkL (5.6)
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where M is the unit time required to collect and broadcast from/to p processors for a floating

point number. When the implementation language and the system are determined, M is a

constant. It is reported that, for most architectures, M is associated with O(log p) [12]. The

cost of broadcasting the initial centroids is ignored because it is constant for the same k and

d, regardless of n, and it is relatively very small compared to the costs of other steps. Based

on the time complexity of SK, the time complexity of PK could be represented as:

TPK =
Fnkd

p
Lt + MdkL (5.7)

Figure 5.1 shows how multiple processors work together to achieve the speedup. If the

step 2 of SK takes t2 seconds, then the step 3 of PK takes t2/p seconds. Even though the

step 2 of PK takes a little longer than the step 1 of SK because of the communication cost,

the difference could be ignored if the time of the calculation step is relatively long. The

difference between the step 4 of PK and the step 3 of SK can be explained in the same way.
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Figure 5.1: Comparison of sequential and parallel k-means algorithms

5.3.2 Parallel Bisecting k-means (PBK) Algorithm

Like the parallel k-means (PK) algorithm, we can design a parallel bisecting k-means (PBK)

algorithm based on the SPMD parallel processing model and message-passing. The steps of

PBK are as follows:

1. Evenly distribute n data points to p processors.
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2. Select a cluster Cj to split based on a rule, and broadcast this information to all

processors.

3. Find 2 subclusters of Cj using the k-means algorithm (bisecting step):

(a) Select 2 data points of Cj as initial cluster centroids and broadcast them to the

pj processors that have data members of Cj.

(b) Each processor calculates the clustering criterion function for its own data points

of Cj with 2 centroids, and assigns each data point to its best choice. (calculation

step)

(c) Collect all information needed to update 2 centroids and broadcast it to the pj

processors participating in the bisecting. (update step)

(d) Repeat steps 3b and 3c until convergence.

4. Repeat steps 2 and 3 I times, and select the split that produces the clusters satisfying

the global function.

5. Repeat steps 2, 3 and 4 until k clusters are obtained.

Let’s discuss the computation complexity of PBK. Only the largest remaining cluster Cj

is split at each bisecting step. Cj has nj data points which may not be evenly distributed

over the p processors. For each bisecting step, each of the pj processors can execute the

calculation step on njp data points at the same time, where njp represents the number of

data members of Cj allocated to a processor. Obviously, the number of data points that

each processor is working on may be different. And for each processor, the value of njp for

each bisecting step may change, too. For each bisecting step, the largest njp determines the

time of the calculation step because, in order to start the update step, every processor must

wait until all the other processors complete the calculation step. The calculation time of

each bisecting step is

Tcomp =
2F

k
max(njp)dLIt (5.8)
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At the end of each iteration, the information of 2 centroids of dimension d is collected

and broadcast to the pj processors for the calculation of next iteration. Those processors

that have no data point of the selected cluster Cj do not participate in this update step.

The communication time of each bisecting step can be represented as:

Tcomm = 2MjdLI (5.9)

where Mj ≤ M because pj ≤ p. During the k − 1 bisecting steps, Mj is not a constant since

pj is not fixed.

The broadcasting time of initial centroids is ignored because it is relatively small com-

pared to the calculation time of the algorithm. By combining Equations (5.8) and (5.9), the

time complexity of PBK could be represented as:

TPBK =
2F

k
(max(n1p) + · · ·+ max(n(k−1)p))dLIt + 2(M1 + · · · + Mk−1)dLI (5.10)

=
2F

k
max(njp)dLI(k − 1)t + 2MjdLI(k − 1) (5.11)

where max(njp) is the average of max(njp) of each bisecting step, and Mj is the average of

Mj.

Figure 5.2 shows the drawback of this implementation. In each calculation step of PK,

all data points of the data set are involved. When they are evenly distributed over the p

processors, the step 3 of PK takes the same time at each processor. But for PBK, not every

data point is involved in the calculation. Only those belonging to the selected cluster Cj are

involved in the calculation. For PBK, the range of max(njp) is [nj/p, nj]. The best scenario

is that every processor has the same number of data points of Cj (i.e., max(njp) = nj/p).

The worst scenario is that only one processor has all data points of Cj (i.e., max(njp) = nj).

During the calculation step, some processors may be idle for different length of time, hence

they may not be fully utilized.
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Figure 5.2: Timing diagram of PBK

5.3.3 Parallel Bisecting k-means with Prediction (PBKP) Algo-

rithm

In order to improve the processor utilization, we propose a new algorithm, named Parallel

Bisecting k-means with Prediction (PBKP). PBKP tries to predict the future bisecting step.

At each bisecting step, instead of splitting one largest cluster, it splits two largest clusters. In

this way, the processor utilization is improved and the number of bisecting steps is reduced.

As a result, the speedup is increased and the total execution time is shortened.

It has been reported that bisecting k-means tends to produce the clusters of similar sizes

[59], where the size of a cluster is the number of data points in the cluster. When the size of

a selected cluster is S, the sizes of its two subclusters are usually around S/2. We can take

advantage of this characteristic by modifying the PBK described in Section 5.3.2. First, let’s

look at the example of BK shown in Figure 5.3. An initial cluster A has 20 data points,

which is represented as a box with the cluster name and size in it. Each arrow represents a

bisecting step, and the associated label shows the order of the step. Figure 5.3(a) shows the

case of original BK algorithm. At the first bisecting step, cluster A is split into clusters B

and C. Since BK tends to produce clusters of similar sizes, if C.size < B.size < 2C.size,

then it is quite probable that, after cluster B is split at the second bisecting step, cluster

C will be split at the third bisecting step by assuming two subclusters of B would not be
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larger than C.

Figure 5.3(b) shows the case that we predict cluster C is the one to be split at the third

bisecting step and do it one step ahead. So, clusters B and C are split into two subclusters,

respectively, at the second bisecting step. Here, C.size < B.size < 2C.size is a prerequisite

of our prediction step. In other words, the prediction step could be performed only under

this condition. This example shows that splitting the largest cluster and the second largest

cluster at one bisecting step does not change the final clustering result, whereas one bisecting

step is reduced.
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(b) Modified BK with a
correct prediction

Figure 5.3: Bisecting k-means and its modification (correct prediction case)

However, there is no guarantee that our prediction is always correct. The example in

Figure 5.4 shows this situation. Figure 5.4(a) shows that cluster C is split at the fourth

bisecting step because one subcluster of cluster B is larger than C. In this case, our prediction

that cluster C would be split at the third step is wrong. Even so, Figure 5.4(b) shows that

splitting C at the second step with B does not change the final clustering result, either,

while the total number of bisecting steps is reduced from 5 to 3.

There may be a case that some descendant of cluster B is always larger than cluster C,

so that C will not be selected to split, but the chance is very slim. Our experimental results

show that the quality of the final clustering of PBKP is as good as that of BK.

The key point of PBKP is to split two clusters, instead of one cluster, at each bisecting

step. As more clusters are split at each bisecting step, more data points are involved in
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the calculation step, and the distribution of those data points over the processors usually

becomes more uniform. Thus, the processor idle time is reduced. Moreover, the reduced

number of bisecting steps helps to reduce the communication cost of the parallel algorithm.
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Figure 5.4: Bisecting k-means and its modification (wrong prediction case)

The steps of PBKP are as follows:

1. Evenly distribute n data points to p processors.

2. Select the largest cluster Cj and the second largest cluster C ′
j from the remaining

clusters to split if Cj.size < 2C ′
j.size (prediction step). Otherwise, select only the

largest cluster to split. Broadcast this information to all processors.

3. Find 2 subclusters of Cj and C ′
j, respectively, by using the k-means algorithm (bisecting

step):

(a) Select 4 data points as initial cluster centroids and broadcast them to the pj

processors that have data members of Cj and C ′
j.

(b) Each processor calculates the clustering criterion function for its own data points

of Cj and C ′
j with 2 sets of 2 centroids, respectively, and assigns each data point

to its best choice. (calculation step)
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(c) Collect all information needed to update 4 centroids and broadcast it to the pj

processors. (update step)

(d) Repeat steps 3b and 3c until convergence.

4. Repeat steps 2 and 3 I times, and select the split that produces the clusters satisfying

the global function.

5. Repeat steps 2, 3 and 4 until k clusters are obtained.

Since the subcluster sizes of each bisecting step are very similar in most cases, usually

Cj.size < 2C ′
j.size holds, hence both Cj and C ′

j are bisected.
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Figure 5.5: Timing diagrams of PBK and PBKP

Figure 5.5 compares the timing diagrams of PBK and PBKP. In order to simplify the

comparison, we assumed I is 1. The prediction step reduces the total execution time in two

ways. First, it reduces the processor idle time. Since two clusters’ data points are usually

more uniformly distributed over the processors than one cluster’s, bisecting two clusters, one

by one in two steps, may take longer time than splitting two in one step. Second, it reduces

the total number of bisecting steps from k − 1 to k/2 .

The calculation time of each bisecting step is:

Tcomp =
2F

k
max(njp + n′

jp)dLIt (5.12)
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where njp and n′
jp represent the numbers of data members of Cj and C ′

j, respectively, which

are allocated to a processor. The range of max(njp + n′
jp) is [(nj + n′j)/p, (nj + n′

j)].

At the end of each iteration, the information of 4 centroids of dimension d is collected

and broadcast to the pj processors for the next loop’s calculation step. The communication

time of each iteration is:

Tcomm = 4MjdLI (5.13)

Thus, the time complexity of PBKP could be represented as:

TPBKP = Fmax(njp + n′
jp)dLIt + 2MjdLIk (5.14)

5.4 Experimental Results

First, we evaluated the clustering qualities of k-means (SK) and bisecting k-means (BK) on

data sets with different cluster size distributions to find their best applicability. Then, the

clustering accuracies of new parallel bisecting k-means with prediction (PBKP) and BK are

compared to show that the prediction step does not affect the quality of the clustering. Last,

the speedup and scaleup of PBKP algorithm were measured to show its efficiency.

5.4.1 Experimental Setup

Our test platform is a 9-node Linux cluster system, where nodes are connected by a Fast

Ethernet switch. Each node has a 800 MHz Pentium processor, 512 MB memory and a 40

GB disk drive. The implementation of all the algorithms is in Java, and the Remote Method

Invocation (RMI) is used for interprocess communication. Since we focused on the efficiency

of the parallel algorithms, our time measurement ignored the disk I/O times for the initial

reading and distribution of the data set and for the final result saving on the disk.

We used both real-world data sets and artificial data sets in our experiments. For the

quality test of sequential and parallel algorithms, four real-world data sets and three groups

of artificial data sets were used in the experiments. For the performance and scalability

analyses of parallel algorithms, three groups of artificial data sets were used.
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The four real-world data sets used in our experiments are: king-rook-vs-king chess

database (KRKOPT), letter recognition database (LETTER), optical recognition of hand-

written digits (OPTDIGITS), and pen-based recognition of handwritten digits (PENDIG-

ITS). They are obtained from the UCI Machine Learning Repository [61]. These data sets

are different in terms of the dimension, the number of data points, the number of clusters,

and the cluster size distribution. Each data point of the data sets has been pre-classified into

a class. This information is hidden during the clustering process and used to evaluate the

clustering accuracy of each clustering algorithm. Table 5.1 summarizes the characteristics

of the real-world data sets.

Data Number Number Number Min. Max.

Set of Data of of Class Class

Points Classes Dimensions Size Size

KRKOPT 28056 18 6 27 4553
LETTER 20000 26 16 734 813
OPTDIGITS 3823 10 64 363 414
PENDIGITS 7494 10 16 696 802

Table 5.1: Summary of real-world data sets used

The artificial data sets used in the experiments were generated by using the algorithm

introduced in [45]. The clusters generated by this algorithm are well-separated, mildly

truncated multivariate normal mixtures with boundaries separated by a random quantity.

As such, the resulting structure could be considered to consist of natural clusters which

exhibit the properties of external isolation and internal cohesion [45]. This kind of artificial

data sets were widely used to test the properties of clustering algorithms [15]. The generated

data sets contain distinct nonoverlapping clusters. For the given number of clusters (k), the

number of data points (n) and the dimension (d), three data sets with different cluster size

distributions were generated to test the efficiency of parallel clustering algorithms. Since we

set the noise dimension and the percentage of outliers as zero, the generated data sets could

be considered as classified data sets to evaluate the quality of clustering algorithms in terms

of accuracy.
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5.4.2 Quality Test of Sequential and Parallel Algorithms

The selection of initial centroids plays a very important role in k-means and bisecting k-

means algorithms. Different initial centroids produce different clustering results, thus their

qualities are different. Especially for k-means, the number of loops in each run depends on

the choice of initial centroids. In our experiments, in order to eliminate this impact, we used

the same initial centroids for both k-means and bisecting k-means.

5.4.2.1 Evaluation Method

We use the Entropy [58] to evaluate the quality of the clustering algorithm in terms of

accuracy. The entropy is an external quality measure of a clustering algorithm. By comparing

the clustering result with known classes, this measure shows how good it is. For each

cluster of the clustering result, the class distribution of the data points is calculated first

by computing the probability that a member of cluster j belongs to class i, denoted by pij.

Then, the entropy of each cluster j is calculated as:

Ej = −
∑

i

pij log pij (5.15)

The total entropy of all the clusters is the sum of the entropies of the clusters weighted by

their sizes:

E =
k∑

j=1

njEj

n
(5.16)

where nj is the size of cluster j, n is the total number of data points, and k is the number

of clusters. The smaller the entropy, the purer the produced clusters are.

5.4.2.2 Comparison of Sequential k-means (SK) and Bisecting k-means (BK)
Algorithms

Three groups of artificial data sets were used to test the clustering quality of SK and BK. The

first group is the data sets with the same number of data points in each cluster. The second

group is the data sets that one cluster always contains 10% of the data points; whereas in

the third group, one cluster always contains 60% of the data points. The remaining data
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points are distributed as uniformly as possible across the other clusters. For the third group,

there is big discrepancy in cluster sizes when the number of clusters is large. On the other

hand, the second group has discrepancy in cluster sizes when the number of clusters is small.

We ran both SK and BK on these three groups of data sets to compare the results.

For each group, we generated 4 data sets by setting d = 8, n = 10000, and varying the

number of clusters (k) from 4 to 32. Thus, for each k, we generated three different cluster

size distributions. Table 5.2 shows the test results. From the results, we can find that, for

the same choice of initial centroids, BK works very well on the data sets of group 1, each of

which has the clusters with the same number of data points. BK also performs better on the

data sets of group 2 when k is small, such as 4, 8, and 16. On the rest of group 2 and all data

sets of group 3, there is no big difference between the results of these two algorithms. This

is because BK tends to produce the clusters of similar sizes, which justifies the prediction

step of our PBKP algorithm.

There are a few methods to find good initial centroids to improve the performance of

k-means [4, 7, 13]. If these methods are adopted, k-means can perform better on the data

sets with different cluster sizes. However, since it is not the main issue of this chapter, we

do not discuss it further.

Group No. k k-means Bisecting k-means

Group 1 4 0.250 0.001
8 0.083 0.005
16 0.151 0.004
32 0.110 0.015

Group 2 4 0.517 0.355
8 0.285 0.250
16 0.380 0.294
32 0.284 0.285

Group 3 4 0.434 0.466
8 0.441 0.452
16 0.446 0.447
32 0.436 0.437

Table 5.2: Entropies of k-means and Bisecting k-means (d = 8, n = 10000)
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5.4.2.3 Comparison of Parallel Bisecting k-means with Prediction (PBKP) and
Bisecting k-means (BK) Algorithms

In order to show that the prediction step of PBKP does not affect the quality of the clustering,

we compared the clustering accuracies of PBKP and BK.

Both the real-world data sets listed in Table 5.1 and three groups of artificial data sets

were used in this experiment. The three groups of artificial data sets were generated as

before; and for each group, 18 data sets were obtained by varying d, n, and k parameter

values.

We executed both algorithms 10 times on each data set, and the average entropies of

their final clustering results obtained are shown in Tables 5.3 and 5.4.

Group 1 Group 2 Group 3

n d k BK PBKP n d k BK PBKP n d k BK PBKP

10000 4 8 0.052 0.051 10000 4 8 0.209 0.210 10000 4 8 0.452 0.452
16 0.094 0.094 16 0.331 0.330 16 0.464 0.464
32 0.027 0.027 32 0.224 0.227 32 0.436 0.436

8 8 0.005 0.005 8 8 0.250 0.253 8 8 0.452 0.451
16 0.004 0.004 16 0.294 0.295 16 0.447 0.445
32 0.015 0.015 32 0.285 0.285 32 0.437 0.439

20000 4 8 0.018 0.018 20000 4 8 0.231 0.230 20000 4 8 0.460 0.462
16 0.134 0.135 16 0.289 0.291 16 0.448 0.449
32 0.058 0.058 32 0.271 0.272 32 0.439 0.440

8 8 0.001 0.001 8 8 0.209 0.209 8 8 0.452 0.453
16 0.062 0.060 16 0.214 0.213 16 0.448 0.445
32 0.017 0.017 32 0.263 0.264 32 0.440 0.443

40000 4 8 0.127 0.126 40000 4 8 0.209 0.210 40000 4 8 0.484 0.480
16 0.009 0.009 16 0.264 0.265 16 0.449 0.452
32 0.032 0.032 32 0.216 0.216 32 0.444 0.445

8 8 0.001 0.001 8 8 0.209 0.209 8 8 0.485 0.485
16 0.053 0.052 16 0.328 0.327 16 0.462 0.463
32 0.102 0.101 32 0.210 0.210 32 0.442 0.441

Table 5.3: Entropies of BK and PBKP on artificial data sets

As we discussed in Section 5.3.3, the prediction of PBKP has two cases: correct prediction

and wrong prediction. However, since PBKP tends to produce clusters with similar sizes as

BK does, there is very little chance that the prediction step changes the clustering result.

Tables 5.3 and 5.4 show that PBKP has the same level of clustering accuracy as BK, and

we found they have the identical clustering result for most of the data sets used.
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Data Set k BK PBKP

KRKOPT 18 0.746 0.746
LETTER 26 0.695 0.696
OPTDIGITS 10 0.424 0.423
PENDIGITS 10 0.405 0.405

Table 5.4: Entropies of BK and PBKP on real-world data sets

5.4.3 Performance and Scalability Analysis of Parallel Algorithms

5.4.3.1 Speedup

If it takes ts seconds to cluster a data set into k clusters on one processor and tp seconds on

p processors, the speedup is the ratio of ts to tp. By using Equations (5.3) and (5.7), the

speedup of the parallel k-means (PK), denoted by SPK, could be represented as:

SPK =
Fnt

Fnt
p

+ M
(5.17)

From Equation (5.17), we can find that

SPK → p when n � Mp

Ft
(5.18)

By using Equations (5.5) and (5.11), the speedup of the parallel bisecting k-means (PBK),

denoted by SPBK , could be represented as:

SPBK =
Fnjt

Fmax(njp)t + Mjk
(5.19)

where

nj ≤ n, Mj ≤ M and max(njp) ∈ [
nj

p
, nj]

Equation (5.19) shows that

SPBK → nj

max(njp)
when max(njp) �

Mjk

F t
(5.20)

And by using Equations (5.5) and (5.14), the speedup of the parallel bisecting k-means with

prediction (PBKP), denoted by SPBKP , could be represented as:

SPBKP =
Fnjt

k−1
k

F
max(njp+n′

jp
)

2
t + Mjk

(5.21)
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where

nj ≤ n and max(njp + n′
jp) ∈ [

nj + n′
j

p
, nj + n′

j]

Equation (5.21) shows that

SPBKP → 2nj

max(njp + n′
jp)

when
max(njp + n′

jp)

2
� Mjk

F t
(5.22)

We evaluated the speedup of PBKP as we changed the number of data points (n), the

number of clusters (k) and the dimension (d), respectively. Since the parallel bisecting k-

means algorithm is sensitive to the distribution of the data points of each cluster among the

processors, for each data set used in the experiment, we simulated both the worst-case and

the best-case distribution scenarios. For the best-case scenario, we evenly distributed the

data points of each cluster to the processors. For the worst-case scenario, we allocated all

the data points of each cluster to one processor. Each algorithm was tested on both cases

five times, and the reported execution time is the average of those ten runs.

Figure 5.6 shows the speedup with different numbers of data points (n). We generated

three data sets with fixed values of d = 8 and k = 8, and n was varied from 216 to 220. As n

increases, the speedup of PBKP increases almost linearly. This is because larger n leads to

larger max(njp + n′
jp) and Equation (5.22) holds in that case. When n = 220, the speedup

of PBKP is 6.17 when 8 processors are used.
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 Figure 5.6: Speedup of PBKP with different n (d = 8, k = 8)

Figures 5.7 and 5.8 show the comparison of the speedups of PK, PBK and PBKP on

two data sets. The speedup of PBKP is slightly smaller than that of PK, but larger than
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that of PBK. The basic reason why both PBK and PBKP have smaller speedup than PK is

that, for PBK and PBKP, the number of processors and their data points involved in each

calculation step may be different. The difference in speedup comes from two sources. First,

the ideal speedups of PBK and PBKP are smaller that that of PK:

nj

max(njp)
≤ p and

2nj

max(njp + n′
jp)

≤ p

Second, when p ≤ k, Equation (5.18) is easier to hold than both Equation (5.20) and

Equation (5.22). PBKP can achieve a better speedup than PBK because nj

max(njp)
is smaller

than 2nj

max(njp+n′

jp
)

for the same distribution of data points over the processors when both

Equation (5.20) and Equation (5.22) hold.
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Figure 5.7: Comparison of three algorithms (d = 8, k = 8, n = 218)
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 Figure 5.8: Comparison of three algorithms (d = 8, k = 8, n = 220)

Figure 5.9 shows the speedup of PBKP for different dimensions (d) when k = 8 and
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n = 220. We can see that changing d does not affect the speedup of PBKP because d is not

a factor in Equation (5.22).
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 Figure 5.9: Speedup of PBKP with different d (k = 8, n = 220)

Figure 5.10 shows the speedup of PBKP for different numbers of clusters (k) when d = 8

and n = 220. Like d, changing k does not affect the speedup much because k is not a factor

in Equation (5.22).

In summary, the speedup of PBKP increases as n increases. When the number of data

points is fixed, the speedup does not change much as k and d increase.
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 Figure 5.10: Speedup of PBKP with different k (d = 8, n = 220)

5.4.3.2 Scaleup

The scaleup is another performance measurement of parallel algorithms. If clustering a data

set of size S on one processor takes t1 seconds, and clustering a data set of size S × p on p

processors takes tp seconds, then the ratio of t1 to tp is the scaleup of the parallel algorithm.
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Ideally, a parallel algorithm keeps the ratio not greater than 1. That is, the increase in the

number of processors could balance the increase in the size of the problem. Since the size of

the problem is determined by n, d and k, we evaluated the scaleup of PBKP with respect

to them, one by one. The average execution times per bisecting step of PBKP are shown

in Figure 5.11. In that test, the number of iterations for each bisecting step (I) was set to

5. Ideally, the execution time per bisecting step does not increase as the parameter values

increase.

To test the scaleup with respect to n, we ran PBKP on the data sets with n as 218, 219,

220, and 221 on 1, 2, 4, and 8 processors, respectively, while d and k were set to 8. Figure

5.11 shows that the execution time per bisecting step is almost constant when the number

of processors increases with the data set size. That means, the increase in the data set size

due to the increased number of data points is perfectly balanced by the increased number

of processors. Thus, when we cluster a data set containing a large number of data points by

using the PBKP algorithm, adding processors can reduce the total execution time.

To test the scaleup with respect to d, we ran PBKP on the data sets with d as 2, 4, 8, and

16 on 1, 2, 4, and 8 processors, respectively, while n = 220 and k = 8. The result shows that

the execution time per bisecting step decreases as the number of processors increases. This is

because usually d is not a dominant factor in the time complexity of the clustering criterion

function. The increased number of processors can easily offset the effect of increased d on

the execution time of each bisecting step.

To test the scaleup with respect to k, we ran PBKP on the data sets with k as 4, 8, 16 and

32 on 1, 2, 4, and 8 processors, respectively, while n = 220 and d = 8. The execution time per

bisecting step drops quickly as k increases. This is because max(njp + n′
jp) changes at each

bisecting step. When k becomes larger, the size of remaining clusters becomes smaller for

fixed n, and so does max(njp+n′
jp). The total execution time of PBKP is mainly determined

by max(njp + n′
jp) of each bisecting step, thus the average execution time per bisecting step

becomes smaller when k increases.

For a comparison, we also evaluated the scaleup of the parallel k-means (PK) algorithm.

In Figure 5.12, the average execution time per loop of PK is shown for different cases. By
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 Figure 5.11: Scaleup of PBKP
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Figure 5.12: Scaleup of PK

using Equation (5.3) and Equation (5.7), we can represent the scaleup with respect to n as:

ScaleupPK =
FnkdLt

Fnpkd

p
Lt + MdkL

(5.23)

From Equation (5.23), we can find that

ScaleupPK → 1 when n � M

Ft
(5.24)

In Figure 5.12, we can see the scaleup of PK with respect to n approaches to 1 when n is

large enough to satisfy the condition of Equation (5.24). Similarly, the scaleup with respect

to k is close to 1, but slightly higher. The scaleup with respect to d is also low because,

like the case of PBKP, d is not a dominant factor in the time complexity of the clustering

criterion function.
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Comparing PBKP and PK, PK has better scaleup with respect to the number of data

points (n), but PBKP has better scaleup with respect to the dimension (d) and the desired

number of clusters (k).

5.5 Conclusions and Future work

In this chapter, we proposed a new parallel bisecting k-means algorithm, named PBKP,

for message-passing multiprocessor systems. PBKP predicts the future bisecting step, such

that two largest clusters are split at each bisecting step, instead of just one. As a result,

processors are better utilized and the number of bisecting steps is reduced. This prediction

step is based on the fact that bisecting k-means (BK) tends to produce the clusters of similar

sizes and, in that case, the clustering accuracy is usually high. We showed that bisecting

k-means produces clusters with smaller entropy (i.e., purer clusters) than k-means does.

We implemented PBKP on a cluster of Linux workstations and analyzed its performance.

Our experimental results show that the speedup of PBKP is linear with the number of

processors and the number of data points, while its clustering accuracy is as good as that of

BK. Compared to the parallel k-means (PK) algorithm [15], PBKP has better scaleup with

respect to the dimension (d) and the number of clusters (k). As k increases, PBKP reduces

the average execution time per bisecting step, while PK keeps its average loop execution

time almost constant.

We also tested PK and PBKP on a collection of text documents which are processed

in the vector space model [57]. The speedups of these parallel algorithms were not linear

because they were designed based on the assumption that the number of data points (n) is

much larger than the dimension of the data points (d) and the desired number of clusters (k).

However, it is not the case of a typical text database because its dimensionality in the vector

space model increases when the number of text documents increases. This is because the

number of unique words (d) in documents usually increases with the number of documents

(n). With the rapid growth of WWW, there are many huge text databases to be processed,

so there is a clear need of scalable text clustering algorithms. We are developing an efficient

text clustering algorithm by considering the unique characteristics of text databases.
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Chapter 6

Conclusion

In this dissertation, a set of new scalable and high performance text clustering algorithms

is presented. Comprehensive performance studies were conducted on all the proposed algo-

rithms. The experimental results show that our clustering algorithms are scalable and have

much better clustering accuracy than existing algorithms. This research is summarized as

follows:

• The proposed frequent word sequence mining algorithm is implemented and tested.

The testing results show that this algorithm is quite scalable as the database size

increases. The new algorithm CFWS, which is proposed to cluster documents by

measuring the closeness of documents based on the sharing of frequent word sequences,

is implemented. The new algorithm CFWMS, which is proposed to extend CFWS by

adopting Ontology into clustering, is completed. The CFWS and CFWMS algorithms

are compared with bisecting k-means [59] and FIHC [21] algorithms with respect to the

accuracy of text clustering. For experiments, we used the Reuters-21578 text collection

and a corpus of the Text Retrieval Conference (TREC) [27]. Our experimental results

show that the frequent word sequences mined from our test database and the clusters

obtained are useful in improving the precision of text retrieval.

• A new statistic data Rw,c is proposed to evaluate the term-category dependency more

precisely than χ2 statistic. This data measures whether the dependency between a

term and a category is positive or negative. A new supervised feature selection method

based on the family of χ2 statistical data (CHIR) is proposed and implemented. Unlike
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the feature selection method CHI, CHIR selects features which have strong positive

dependence on categories. In other words, CHIR keep only the features which are

relevant to categories. Furthermore, a new text clustering algorithm TCFS is proposed

to involve CHIR into the text clustering process. The cluster label information obtained

during the clustering process is utilized as the known class label information for the

feature selection. The selected features improve the quality of clustering iteratively, and

as the clustering process converges, the clustering result has higher accuracy. TCFS

with CHIR has been implemented and compared with existing clustering and feature

selection algorithms, such as k-means, k-means with the Term Strength (TS) feature

selection method, and TCFS with CHI. Our experimental results show that TCFS

with CHIR has better performance than other algorithms in terms of the clustering

accuracy for different test data sets.

• The information of neighbor matrix is applied to the family of k-means algorithm in

three aspects. First, a new document closeness measurement function (CL) is pro-

posed. This new measurement combines global information with pair-wise similarity

measurement. Second, a new initial centroids selection method (Rank) is studied. This

new method selects the initial centroids based on the rank of documents. Third, a new

heuristic function for selecting clusters to spilt (NB) for bisecting k-means is proposed.

Our experimental results showed that the clustering quality of k-means and bisecting

k-means algorithms is improved by adopting these new techniques. First, the test

results proved that the selection of initial centroids is critical to the clustering qual-

ity of k-means and bisecting k-means. The initial centroids selected by our method,

which are well distributed and close to sufficient topically related documents, improve

the clustering quality. Second, the compactness of a cluster could be measured accu-

rately by evaluating the neighbors of the centroid of the cluster. Third, the test results

showed that our new method of measuring the closeness of two documents based on

the combination of the pairwise similarity and the connections of neighbor documents

performs better than using the pairwise similarity alone.

• A new parallel bisecting k-means algorithm, PBKP, is proposed for message-passing

multiprocessor systems. PBKP predicts the future bisecting step, such that two largest
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clusters are split at each bisecting step, instead of just one. As a result, processors are

better utilized and the number of bisecting steps is reduced. This prediction step is

based on the fact that bisecting k-means (BK) tends to produce the clusters of similar

sizes and, in that case, the clustering accuracy is usually high. PBKP is implemented

on a cluster of Linux workstations and its performance is analyzed. The experimental

results show that the speedup of PBKP is linear with the number of processors and

data points, while its clustering accuracy is as good as that of BK. Compared to the

parallel k-means (PK) algorithm [15], PBKP has better scaleup with respect to the

number of clusters (k). As k increases, PBKP reduces the average execution time per

bisecting step, while PK keeps its average loop execution time almost constant.
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