Lisp Mapping Specification

New Edition: May 2000

Copyright 2000, Franz, Inc.

The companies listed above have granted to the Object Management Group, Inc. (OMG) a nonexclusive, royalty-free, paid
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version. Each of the copyright holders listed above has agreed that no person shall be deemed to have infringed the copyr
in the included material of any such copyright holder by reason of having used the specification set forth herein or having
conformed any computer software to the specification.

PATENT

The attention of adopters is directed to the possibility that compliance with or adoption of OMG specifications may require us
of an invention covered by patent rights. OMG shall not be responsible for identifying patents for which a license may be
required by any OMG specification, or for conducting legal inquiries into the legal validity or scope of those patents that are
brought to its attention. OMG specifications are prospective and advisory only. Prospective users are responsible for
protecting themselves against liability for infringement of patents.

NOTICE

The information contained in this document is subject to change without notice. The material in this document details an
Object Management Group specification in accordance with the license and notices set forth on this page. This document d
not represent a commitment to implement any portion of this specification in any company's products.

WHILE THE INFORMATION IN THIS PUBLICATION IS BELIEVED TO BE ACCURATE, THE OBJECT

MANAGEMENT GROUP AND THE COMPANIES LISTED ABOVE MAKE NO WARRANTY OF ANY KIND,

EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL INCLUDING, BUT NOT LIMITED TO ANY

WARRANTY OF TITLE OR OWNERSHIP, IMPLIED WARRANTY OF MERCHANTABILITY OR WARRANTY OF

FITNESS FOR PARTICULAR PURPOSE OR USE. In no event shall The Object Management Group or any of the
companies listed above be liable for errors contained herein or for indirect, incidental, special, consequential, rediaaice or ¢
damages, including loss of profits, revenue, data or use, incurred by any user or any third party. The copyright holders listec
above acknowledge that the Object Management Group (acting itself or through its designees) is and shall at all times be t}
sole entity that may authorize developers, suppliers and sellers of computer software to use certification marks, trademarks
other special designations to indicate compliance with these materials. This document contains information which is protect
by copyright. All Rights Reserved. No part of this work covered by copyright herein may be reproduced or used in any form ¢
by any means--graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and
retrieval systems--without permission of the copyright owner.

RESTRICTED RIGHTS LEGEND. Use, duplication, or disclosure by government is subject to restrictions as set forth in
subdivision (c) (1) (i) of the Right in Technical Data and Computer Software Clause at DFARS 252.227.7028m@MG
Object Management are registered trademarks of the Object Management Group, Inc. Object Request Broker, OMG IDL,
ORB, CORBA, CORBAfacilities, CORBAservices, COSS, and IIOP are trademarks of the Object Management Group, Inc.
X/Open is a trademark of X/Open Company Ltd.

ISSUE REPORTING

All OMG specifications are subject to continuous review and improvement. As part of this process we encourage readers tc
report any ambiguities, inconsistencies, or inaccuracies they may find by completing the issue reporting form at
http://www.omg.org/library/issuerpt.htm.

Contents

Preface 1
0.1 About the Object ManagementGroup 1
0.1.1 WhatisCORBA? 1
0.2 Associated OMG Documents 2
0.3 Acknowledgments 2
L. OVeIVIEW . o 1-1
1.1 Introduction e 1-1
1.2 Why is the Lisp Mapping Difficult? 1-2
1.3 MappingGoals 1-2
1.3.1 Ease-ofuse i, 1-3
1.3.2 Consistency 1-3
1.3.3 Flexibility 1-3
1.34 Performance............ ... i, 1-3
1.3.5 AdherencetoIDL 1-3
1.4 Mapping Principles 1-3
1.5 Expressing the MappinginUML.................... 1-4
1.5.1 UML Metamodel 1-4
1.5.2 UML Overview ofaMapping 1-6
1.5.3 What a Mapping Needs to Specify 1-7
1.5.4 Generationof LispfromUML 1-7
1.5.5 Invocation and Definition 1-10
156 PseudoIDL 1-11
1.5.7 Additional information 1-12

Lisp Language Mapping i

Contents

2. Mapping IDLtOLISpo 2-1
2.1 Mapping Concepts 2-2
2.2 Semantics of Type Mapping 2-2
2.3 Mapping forBasic Typesc.ccuiinn... 2-3

231 OVeIVIEW . ..o 2-3
232 Boolean 2-4
233 Char........ 2-4
234 Octet ... 2-4
2.3.5 Wchar,Wstring 2-5
2.3.6 String 2-5
2.3.7 Integer TYpesSot 2-5
2.3.8 Floating Point Types 2-5
239 Fixed....... 2-5
2.4 Introduction to Named Types 2-6
2.4.1 Naming Terminology 2-6
2.5 Distinguished Packages 2-7
2.5.1 Nicknames for Distinguished Packages 2-7
2.6 Scoped Names and Scoped Symbols 2-8
2.6.1 Definitions 2-8
2.7 The package_prefix pragma 2-9
2.7.1 Example 2-10
2.8 Mapping forinterface 2-10
281 Example........ 2-10
282 Stubclasses i 2-11
2.9 Mapping for Operation 2-12
2.9.1 Parameter Passing Modes 2-13
29.2 ReturnValues 2-13
293 ONe-Way.......o i 2-13
2.9.4 Efficiency Optimization: Using macros
instead of functions 2-13
295 Exception.......... e, 2-13
29.6 Context 2-13
297 Example 2-14
2.10 Mapping for Attribute 2-14
2.10.1 readonly attribute 2-14
2.10.2 normal attribute oL 2-15
2.10.3 Example 2-15
2.11 MappingofModule 2-15
2.11.1 Example 2-15

ii Lisp Language Mapping

Contents

2.12 Mappingforenum 2-16
2.12.1 Example e 2-16
2.13 Mappingfor Struct 2-17
2.13.1 Example........ e 2-17
2.14 MappingforUnion 2-18
2.14.1 Member ACCESSOIS ivi i 2-18
2.142 Example 2-18
2.15 Mappingforconst 2-19
2151 Example 2-19
2.16 Mappingforarray0 2-20
2.16.1 Example........ 2-20
2.17 Mapping forsequence i 2-20
2.17.1 Example 2-21
2.18 Mapping for Exception, 2-21
2.18.1 UserException 2-22
2.18.2 System Exception 2-23
2.19 Mapping fortypedef 2-23
2.19.1 Example........ e 2-23
2.20 Mappingforany 2-24
2.20.1 Constructorsiii 2-24
2.20.2 Typecode acCesSOor vvi ... 2-24
2.20.3 value accessoruiiiiininn. 2-25
2.20.4 Interactionwith GIOP 2-25
2.20.5 Additional examples of any usage 2-26
2.21 Mapping for valuetype o, 2-26
2.21.1 Inheritance of valuteype 2-26
2.21.2 Valuetypes supporting interfaces 2-27
2.21.3 Baseclassforvaluetype 2-27
2.21.4 Valuetype members 2-27
2.21.5 Valuetype operations 2-28
2216 Boxedvalues 2-29
2.21.7 Valuefactory 2-29
2.21.8 Unmarshallinglissues 2-30
2.21.9 Mapping for Abstract Valuetypes 2-30
22110 Example 2-31
2.22 Custom Valuetypesc.co i 2-31
3. Mapping Pseudo-ObjectstoLisp 3-1
3.1 Introduction 3-2
3.1.1 PseudoInterface 3-2

Lisp Language Mapping iii

Contents

3.2 Rules for Mapping Pseudo-objects 3-2
3.21 Example 3-2
3.3 Certain Exceptionsciiiiiiiinn.. 3-3
3.4 Environment 3-3
3.5 NamedValue 3-3
3.6 NVLISt ... 3-4
3.6.1 Example........ 3-4
3.7 Context 3-4
3.8 Request e 3-4
3.81 Example........ 3-5
3.9 Dynamic Invocation Interface 3-5
3.9.1 Dynamic Invocation Interface
Convenience Function 3-5
3.9.2 Example 3-6
3.10 ServerRequest 3-6
3.10.1 Example........ 3-7
3.10.2 TypeCode 3-7
3.10.3 Example 3-8
311 ORB .o 3-8
3.11.1 ORBinitialization 3-8
3.11.2 Example 3-9
3.11.3 ORB pseudo-object 3-9
3.11.4 Example........ 3-11
3.12 ODbjecCt. . .o 3-12
3.12.1 Examples 3-13
3.12.2 Principal 3-13
313 DYNANY . o 3-13
3.13.1 Example e 3-13
3.14 ThelDLCompiler 3-13
3.141 Example........ 3-14
4, Server-Side 4-1
4.1 Mapping of Native Types, 4-1
4.2 Dynamic Implementation 4-2
4.3 PortableServer Functions 4-3
4.4 Implementationobjects L. 4-3
45 Servantclasses 4-3
451 Example...... 4-3
4.6 DefiningMethods 4-4

Lisp Language Mapping

Contents

4.6.1 Syntax of corba:define-method 4-4
4.6.2 Description e 4-5

4.7 Examples 4-5
471 Example:ANamedGrid 4-5
Appendix A - Detailed Design Choices A-1
Appendix B-LispConcepts. B-1

Lisp Language Mapping v

Contents

Vi

Lisp Language Mapping

Preface

About the Object Management Group

The Object Management Group, Inc. (OMG) is an international organization supported by
over 800 members, including information system vendors, software developers and users.
Founded in 1989, the OMG promotes the theory and practice of object-oriented technol-
ogy in software development. The organization's charter includes the establishment of
industry guidelines and object management specifications to provide a common frame-
work for application development. Primary goals are the reusability, portability, and
interoperability of object-based software in distributed, heterogeneous environments. Con-
formance to these specifications will make it possible to develop a heterogeneous applica-
tions environment across all major hardware platforms and operating systems.

OMG's objectives are to foster the growth of object technology and influence its direction
by establishing the Object Management Architecture (OMA). The OMA provides the
conceptual infrastructure upon which all OMG specifications are based.

What is CORBA?

The Common Object Request Broker Architecture (CORBA), is the Object Management
Group's answer to the need for interoperability among the rapidly proliferating number of
hardware and software products available today. Simply stated, CORBA allows applica-
tions to communicate with one another no matter where they are located or who has
designed them. CORBA 1.1 was introduced in 1991 by Object Management Group
(OMG) and defined the Interface Definition Language (IDL) and the Application Pro-
gramming Interfaces (API) that enable client/server object interaction within a specific
implementation of an Object Request Broker (ORB). CORBA 2.0, adopted in December
of 1994, defines true interoperability by specifying how ORBs from different vendors can
interoperate.

Lisp Mapping V1.0 May 2000 1

Associated OMG Documents

The CORBA documentation is organized as follows:

®* Object Management Architecture Guidefines the OMG's technical objectives and
terminology and describes the conceptual models upon which OMG standards are
based. It defines the umbrella architecture for the OMG standards. It also provides
information about the policies and procedures of OMG, such as how standards are
proposed, evaluated, and accepted.

® CORBA: Common Object Request Broker Architecture and Specificaditains
the architecture and specifications for the Object Request Broker.

® CORBAservices: Common Object Services Specificatimtains specifications for
OMG's Object Services.

The OMG collects information for each specification by issuing Requests for Information,
Requests for Proposals, and Requests for Comment and, with its membership, evaluating
the responses. Specifications are adopted as standards only when representatives of the
OMG membership accept them as such by vote. (The policies and procedures of the OMG
are described in detail in tii@bject Management Architecture Guigle

OMG formal documents are available from our web site in PostScript and PDF format. To
obtain print-on-demand books in the documentation set or other OMG publications, con-
tact the Object Management Group, Inc. at:

Acknowledgments

OMG Headquarters
250 First Avenue, Suite 201
Needham, MA 02494

USA

Tel: +1-781-444-0404
Fax: +1-781-444-0320

pubs@omg.org

http://www.omg.org

The following companies submitted and/or supported parts of this specification:

BBN
Boeing
Franz, Inc.
Fujitsu
IBM
MITRE
Raytheon

2 Lisp Mapping V1.0

May 2000

1.1

Introduction

Overview 1

What color is a chameleon on a mirror?

-- Steve Wright (attributed)

Contents
The contents of this chapter are not normative. This chapter contains the following
sections.
Section Title Page
“Introduction” 1-1
“Why is the Lisp Mapping Difficult?” 1-2
“Mapping Goals” 1-2
“Mapping Principles” 1-3
“Expressing the Mapping in UML” 1-4

The purpose of this chapter is to describe fundamental design principles expressed in
the actual mapping.

The overall goal of our mapping design was to make a successful Lisp mapping. We
wanted the mapping to be widely used in Lisp applications and to be supported by
multiple vendors.

We began by studying the existing mappings and in particular determining which
mappings appeared to be successful and which did not, and why. We also tried to
identify characteristics of Lisp that make it well-suited or ill-suited to use in a CORBA

Lisp Mapping V1.0 May 2000 1-1

environment. We tried to make sure that our mapping could exploit the traits of Lisp
that were well-suited to a CORBA environment while minimizing the traits that were
not well-suited to a CORBA environment.

1.2 Why is the Lisp Mapping Difficult?

The reason the Lisp mapping is difficult, and the reason that so much effort is
expended here and in Appendix A to justify the mapping, is precisely that, in some
sense, the mapping is too easy.

Many Lisp programmers will idiomatically begin the development of an application
solution in a domain by tailoring the Lisp language itself to that domain.

Indeed, Lisp offers a plethora, if not a surfeit, of features to support this: reader
macros, meta-object protocol, macros, compiler macros, code-generation, on-the-fly-
compilation, mutable objects and classes, and so on.

In the particular case of mapping into IDL, however, the constraint is a bit more
complex, since an IDL mapping should feel idiomatic to Lisp programmers. Thus, the
design of a Lisp mapping is invariably driven by the tension between making the
syntax and semantics as IDL-friendly as possible and making the syntax and semantics
as friendly as possible, not so much to the Lisp language per se, but to some common
informal application-independent idioms used by Lisp programmers.

This mapping design thus represents a continual resolution of the tension between
these two idioms: the adaptation of Lisp to CORBA, which is one type of Lisp idiom,
and the adaptation of CORBA to Lisp.

For example, consider the simplest possible mapping: that of identifiers. We reviewed
at least ten different identifier mappings, many of which were implemented in
prototype ORBs. For example, some Lisp programmers like to notate identifiers by
separating words with a hyphen, while in IDL, case changes or underscores are
idiomatic. Of course, Lisp can fully support the IDL style, but should it? Answers vary.
(We chose to use IDL-style identifiers).

This simple tension was expressed on many levels throughout the mapping. In order to
resolve it satisfactorily but not in an ad hoc way, we formulated a set of design
principles, and we exhaustively prototyped and commercially implemented the various
recommendations. We eventually were able to distill the mapping principles to a small
set of natural mapping principles which informed and motivated the specific mapping.
The UML metamodel has proven extremely useful in expositing these principles.

1.3 Mapping Goals
The five design goals of this mapping are:
1. Ease of use
2. Consistency

3. Flexibility

Lisp Mapping V1.0 May 2000

4. Performance

5. Adherence to IDL

1.3.1 Ease-of-use

CORBA systems are often cross-platform, cross-language, and cross-vendor. Their
development presents certain unavoidable difficulties for the programmer. Our aim was
to make the Lisp ORB as simple to use as possible. We strove for a system in which
common idioms could be expressed concisely and in which common defaults were
chosen. For example, the skeleton classes automatically generate slots for attributes,
operation invocation syntax can be very concise. dihemapping chooses reasonable
defaults for most cases, although means to override the defaults are given.

1.3.2 Consistency

A crucial design goal was that our mapping be as easy to learn to use as possible even
for users not expert in Lisp or in CORBA. To achieve this, we aimed for a mapping as
consistent as possible. Consistency was achieved by viewing the mapping as a mapping
on the UML metamodel underlying the IDL type model.

1.3.3 Flexibility

The mapping should facilitate the production of flexible and dynamically modifiable
code. CLOS auxiliary methods and smart proxies are supported; run-time code
modification based on dynamically computed repositories is supported.

1.3.4 Performance

The features described here should not impose undue performance overhead.

1.3.5 Adherence to IDL

We adhere to IDL conventions as much as possible, even when specifying pseudo-
interfaces.

1.4 Mapping Principles

The key goal in the mapping design was to designate a small set of principles that
could be uniformly applied to generate the mapping.

Our maotivation, thus, was to produce a mapping that is not only useful, but is also
easy-to-learn and aesthetically pleasing.

In specifying and in implementing a language mapping, it is difficult to avoid close
attention to the details of IDL language and target language syntax. Mapping
documents sometimes loosely speak of mapping from IDL syntactic elements to target
language syntactic elements.

Lisp Mapping V1.0 Mapping Principles May 2000 1-3

We used the UML meta-model informally to express the key concepts in our mapping
independent of the syntactic specifics of their expression in IDL.

Note —Although the principles underlying the mapping are expressed informally in
UML, familiarity with the UML metamodel is not necessary in order understand these
principles. In fact, it normally suffices simply to keep in mind standard object-oriented
terminology and praxis; the UML metamodel serves primarily only as a way to exposit,
but not necessarily to design, the mapping principles.

1.5 Expressing the Mapping in UML

Our mapping is normatively specified by its action on textual entities: the input IDL
and the output Lisp. Although precise, this prescription has the flaw that it obfuscates
the underlying principles used to select these textual representations. The mapping is
actually more clearly thought of directly as a transformation on UML models. The
mapping on models is much simpler and crisper than the mapping on sources.

Thus, the expression of the underlying principles governing our choice of mapping can
be clearly and succinctly expressed using the UML metamodel. (The presentation here
is informal and purposely elides some details, of course.)ping. The UML metamodel.
(The presentation here is informal and purposely elides some details, of course.)

Because the native Lisp object model is farther from the IDL object model than is the
case with Java and C++, it is useful in discussing the Lisp mapping to describe more
generally the nature of a language mapping.

1.5.1 UML Metamodel

We now present some salient aspects of the UML 1.3 meta-model that will be used in
the description in this section:

Lisp Mapping V1.0 May 2000

Package
%7 owhedElement 0.1
Namespace
ModelElement O.n namespace
+name : Mame e Lr
[ﬁ Classifier
Foature Heature
0.n 1
{ardarad) 0.1 [+own
StructuralFeature EehavioralFeature
Class

A

&

Attribute

Operation

Figure 1-1 Simplified UML 1.3 meta-model

In a static class diagram representing a model of an IDL file, each struct, union,
interface, exception, and valuetype defined in that file will correspondiassifier
object.

A UML model comprises various model elements.

® A Classifieris a kind of model element that describes behavioral and structural
features. We view typedefs, exceptions, structs, interfaces, and so on as defining
Classifier elements in the model.

® A Featureis a property encapsulated in a ClassifielStucturalFeaturerefers to
static model elements; we consider IDL attribute and member declarations to
correspond to instances of StructuralFeature. We consider IDL operation
declarations to correspond to instances of Operation. The Operation and
StructuralFeature classes have, of course, other attributes for determining data type,
calling sequence, and so on; these are not shown in this diagram.

Lisp Mapping V1.0 Expressing the Mapping in UML May 2000 1-5

®* A Namespacéolds a collection of model elements; each classifier, but most
importantly thePackage is a Namespace.

1.5.2 UML Overview of a Mapping

A mapping is fundamentally a transformation of object models: As input it takes a
model representing a set of IDL files; as output it produces a model representing a set
of Lisp data types. This is illustrated informally in the figure below.

Logical View

INPUT A OUTPUT A

—1

1

1.1

1 qmaps to

b

gLrepresentssxa
P gErepresents==s

output.lisp

input.idl - maps 1o

Figure 1-2 Language mapping from IDL model to Lisp model

Figure 1-2 represents the conceptual entities involved in a Lisp language mapping.
Each entity is described below:

1.5.2.1 input.idl

Theinput.idl file represents a source file in IDL. The goal of the language mapping is
to determine how the datatypes defined in this file may be accessed from the target
language, in this case Lisp.

1-6 Lisp Mapping V1.0 May 2000

1.5.2.2 INPUT

The INPUT system model is intended here to represent a static UML class diagram
which represents the elements defined in input.idl. Because the UML Profile for
CORBA is not standardized at the time of this writing, some common-sense guesses on
the appropriate UML representation for IDL elements may be made; these do not
impact the underlying mapping.

For example, we can assume that each IDL data type is a Classifier; that IDL interfaces
are represented by Class objects, that interface inheritance is represented by a
Generalization association, that modules are represented by Package, and so on.

At any rate, the INPUT model is a static model of the input IDL file: it is a normal
UML class diagram representing each element of the IDL file.

1.5.2.3 OUTPUT

Each model element - packages, classes, associations, and so on - in the input model,
which corresponds to the file input.idl, is transformed by the mapping into a set of
model elements in the output model. In fact, for the most part the input and output
models are identicaAssociationmaps toAssociation Classifier maps toClassifier,
Packagemaps toPackage Operation maps toOperation. There is slight complexity

in that an interface class in the input model maps to several classes in the output model
(stub and skeleton classes); similarly, a Generalization between two interface Class
objects in the input model is mapped to several Generalizations in the output model.

1.5.2.4 output.lisp

Once output model is generated, the Lisp datatypes, which we here informally
designate by the source file "output.lisp" is generated. Lisp classes and data types are
defined by the mapping whose model is the OUTPUT model.

1.5.3 What a Mapping Needs to Specify

We have seen that a language mapping needs to specify two parameters: Generation o
the output model from the input model; and “forward-engineering” of the target
language from the output model.

There is not much to say about generation of the output model from the input model.
This part of the mapping is essentially language-independent, has been done numerous
times in other mappings, and is well-understood. It is the code-generation of Lisp from
the OUTPUT model where the design choices become more important, and it is this
point that we now address.

1.5.4 Generation of Lisp from UML

We have reduced the unstructured problem of mapping the multitudinous and
multifarious elements of IDL syntax and semantics into the more structured problem of
mapping (some) UML constructs into Lisp.

Lisp Mapping V1.0 Expressing the Mapping in UML May 2000 1-7

1-8

1541

1.5.4.2

Because these UML constructs themselves already represent instances of a simple anc
clean meta-model, the UML 1.3 meta-model, we are led to the following observation:

In order to determine a mapping from IDL to Lisp, it suffices to determine a mapping
for each element of the UML metamodel.

Once phrased in this way, the correct choice of mapping becomes clearer.

For example, both IDL interface and IDL module are namespaces. One early Lisp
mapping mapped both module and interface to the Lisp package—it may not be
immediately obvious whether interface should map to Package.

On the other hand, it is in fact rather obvious that the URAkckageelement should
map to Lisppackage Since it is equally clear that IDinodule (and not IDL
interface) map to UMLPackage we infer quite naturally that IDimodule maps to
Lisp package

In fact, as it turns out the mapping of each UML meta-model element is actually quite
natural. The following table outlines this mapping.

Table 1-1 UML metamodel element mapping

UML metamodel element Lisp mapping
Classifier type
Namespace naming prefix
Package package

Name symbol

Class class
generalization inheritance
OwnedElement /
StructuralFeature slot
BehavioralFeature method

Mapping for Namespace

A top-level namespace is named by the symbol that is its own name. Otherwise, the
namespace is owned by some parent namespace; the name of the namespace is in thi
case the concatenation of the name of the parent with the mapping for ownedElement
(the '/ character) with the name of the namespace.

Mapping for Package
The simplest namespace is Package. This is simply mapped to theakcispge
When this class diagram is mapped into Lisp,@hessifier objects are unchanged.

Hence, we have reduced the problem of mapping the various disparate IDL datatypes
with their corresponding disparate syntax into the much more uniform problem of
mapping aClassifier object into Lisp.

Lisp Mapping V1.0 May 2000

SinceClassifiers havé&eatures, we also much map theeature data type.

Our mapping boils down, therefore, to the following rules:

1.5.4.3 Mapping for Feature

® A StructuralFeature is mapped to a slot. This slot has accessors that follow
standard Lisp conventions. Specifically, each such slot corresponds to an initarg
whose name is the name of the slot and whose packa§&Y8NVORD , and an
accessor function whose name is the name of the slot.

* A BehavioralFeatureis mapped to a method. The first actual parameter of this
method is the target of the operation.

® The Lisp name of the Lisp entity corresponding to a feature is the symbol whose
name is the name of theeature and whose package is tReature package.

1.5.4.4 Mapping for Namespace

A Namespacds corresponds to a symbol formed as follows. Concatenate the names of
all the namespaces containing the given Namespace, outermost to innermost, separatec
by the "/" character. Change the "/" preceding the first Namespace that is not a Package
to ":". This name the symbol corresponding to that Namespace.

We can think of this mapping as: “elementOwnership” maps to “/” is we like.

1.5.4.5 Mapping for Classifier

1.5.4.6

A Class is mapped to a Lisp class that inherits directly from the Lisp class
corresponding to its parents. The root of this inheritance hierarchy is the class
CORBA:<name> where <name> is one WNION, STRUCT, VALUETYPE ,
OBJECT, EXCEPTION, ABSTRACTBASE. This Lisp class has slots and methods
corresponding to thEeatures of theClassifier.

Each suclClasshas a constructor whose name is the name o€thssand which
takes keyword initialization arguments given by $fsucturalFeatures.

An interface Classhas some auxiliary classes generated.

If a Classifier is a not aClassthen it is atypedefand there is no inheritance or
Feature mapping.

Example:

Consider the following simple UML diagram:

Lisp Mapping V1.0 Expressing the Mapping in UML May 2000 1-9

1-10

Lisp package pack

__——-'_'-—-_-—_ .
pack Lisp class pack: A
"]
A
attrl - long _
. . —ﬁ
foofin stringparamg short] © shont Lisp slat attrl with initarg :attr and, accessar attrl
z
B

Lizp method foo

aperd(in FarameterT [lang) © void

Lizp class pack: B inheriting fram pack:A

Figure 1-3 Sample UML diagram to be mapped into Lisp

The pack Package element corresponds to a Lisp package npawd The A
Classifier corresponds to a Lisp class. Sipaek ownsA, A is named, in Lisp,
pack:A.

Note that ifA were defined in the packagack2 which itself was included ipack,
thenA would map to a Lisp class nampédck/pack2:A.

A has two Features with namatrl andoperl. These correspond to elements of the
Feature package in Lisp.

There is a Lisp class namedck:B which inherits frompack:A. It adds an operation
namedoper2.

1.5.5 Invocation and Definition

Implicit in the UML meta-model is that there shall be a way:

® To access a Feature
® To invoke an operation
® To implement a method

The key here is this:

Lisp Mapping V1.0 May 2000

1

Feature operations shall be independent, to the extent possible, of the stereotype of the
associated class.

For example, suppose objechas a feature nametbo” . This rule states:

The value of the featufeo, and the means for accessing this value are independent of
whetherx happens to be a union, a struct, a valuetype, an abstract interface, an
exception, an interface, or a valuetype.

In point of fact, in this case, the feature is always accessed via that form:
(foo x)

The value of the feature is always written via form like:
(setf (foo x) 3)

Here, the symbol “foo” is in the Feature package, with nickname :OP, so this could be
written (op:foo x) and so on.

For example, this rule is one of the key reasons we did not force the metaclass of
mapped struct to be instances of Lisp structure-class, which use a different syntax for
accessing members.

Similarly, if foo were an Operation with parameters a, b, c..., invocation is always via
(op:foo xa b c).

The invocation mapping is summarized in the figure below.

Furn

[foofuma b c)

foola, b,)

Figure 1-4 Sending message foo is mapped to invocation of method foo with parameters the
target object and each of the actual parameters.

1.5.6 Pseudo IDL

A similar system could be drawn for the various PIDL elements. The mapping for
PIDL is similar, in any case, to that for IDL.

Lisp Mapping V1.0 Expressing the Mapping in UML May 2000 1-11

1.5.7 Additional information

Appendix A outlines some of the issues involved more specifically, as well as
discussing thorny but necessary matters such as character sets, name collisions, and th
like.

1-12 Lisp Mapping V1.0 May 2000

Mapping IDL to Lisp 2

This section describes the mapping of IDL into the Lisp language.

In most cases examples of the mapping are provided. It should be noted that the
examples are code fragments that try to illustrate only the language construct being
described.

Contents

This chapter contains the following sections.

Section Title Page
“Mapping Concepts” 2-2
“Semantics of Type Mapping” 2-2
“Mapping for Basic Types” 2-3
“Introduction to Named Types” 2-6
“Distinguished Packages” 2-7
“Scoped Names and Scoped Symbols” 2-8
“The package_prefix pragma” 2-9
“Mapping for Interface” 2-10
“Mapping for Operation” 2-12
“Mapping for Attribute” 2-14
“Mapping of Module” 2-15
“Mapping for enum” 2-16
“Mapping for Struct” 2-17

Lisp Mapping V1.0 May 2000 2-1

Section Title Page
“Mapping for Union” 2-18
“Mapping for const” 2-19
“Mapping for array” 2-20
“Mapping for sequence” 2-20
“Mapping for Exception” 2-21
“Mapping for typedef” 2-23
“Mapping for any” 2-24
“Mapping for valuetype” 2-26
“Custom Valuetypes” 2-31

2.1 Mapping Concepts

By anIDL entitywe mean an element defined in some IDL file. For example, consider
the code fragment

module A {

interface B {

void opl(in long bar);
h
}

The IDL entities are the module nam&dthe interface namel, the operation named
opl, the formal parameter namédr, and the primitive data type®id andlong .

Our mapping will associate to each IDL entity declared in an IDL specification a
corresponding Lisp entity.

The Lisp entity corresponding to a given IDL entity will be said tgbeeratedrom
the IDL entity.

If the IDL entity has a name, then the corresponding Lisp entity will also have a name.
Whereas IDL entities are named by strings (i.e., identifiers), Lisp entities are named by
symbols.

It is the goal of this chapter to specify, for each IDL construct, the Lisp entity, and the
name of that entity, generated by the mapping.

2.2 Semantics of Type Mapping

The statement that an IDL typdas mapped to a Lisp type indicates ifV is a Lisp
value whose corresponding IDL typelisthen the consequences are not specified if
the value ofV is not a member of the type

Lisp Mapping V1.0 May 2000

2

For example, iV is passed as a parameter to an IDL operationVdrisfreturned from
an IDL operation, then a conforming implementation may reasonably perform any of
the following actions iV is not of the typd..

* |f V. may be coerced th, thenV may be replaced by the result of coercihtp the
typelL.

® |f V cannot be coerced to L, then an error may be signalled. If the error occurs
during marshalling or unmarshallingprba:marshal shall be signaled.

2.3 Mapping for Basic Types

2.3.1 Overview

Table 2-1 shows the basic mapping. The first column contains the IDL name of the
IDL type to be mapped. Each IDL type denotes a set of IDL abstract values.

The set of values denoted by an entry in the first column will be mapped under the
mapping described in this document to a set of Lisp values. That set of Lisp values is
described in two ways:

1. The entry “Name of Lisp type” is a symbol that names the type represented by this
set of Lisp values.

2. The entry “Lisp type specifier” is a standard Common Lisp type specifier that
denotes this set of Lisp values.

Table 2-1 Basic Type Mappings

IDL Type Name of Lisp Type Lisp Type Specifier
boolean corba:boolean generalized boolean
char corba:char character

wchar corba:wchar see text

octet corba:octet (unsigned byte 8)
string corba:string string

wstring corba:wstring see text

short corba:short (signed byte 16)
unsigned short corba:unsigned short (unsigned byte 16)
long corba:long (signed byte 32)
unsigned long corba:unsigned long (unsigned byte 32)
long long corba:longlong (signed byte 64)
unsigned long long corba:ulonglong (unsigned byte 64)
float corba:float see text

Lisp Mapping V1.0 Mapping for Basic Types May 2000 2-3

Table 2-1 Basic Type Mappings

IDL Type Name of Lisp Type Lisp Type Specifier
double corba:double see text
long double corba:longdouble see text
fixed corba:fixed see text

Additional details are described in the following sections.

2.3.1.1 Example

(typep -3 ‘corba:short)

>T

(typep -3 ‘corba:ushort)

> nil

(typep “A string” ‘corba:string)
>T

2.3.2 Boolean

The IDL boolean constanfBRUE andFALSE are mapped to the corresponding Lisp
boolean literalsT andnil . The type specifiecorba:boolean specifies the type T,
also called generalized boolean.

2.3.3 Char

IDL char maps to the Lisp typeharacter . The type specifiecorba:char
specifies this type.

2.3.3.1 Usage example

(typep #\x ‘corba:char)
>T
(typep “x
> nil

corba:char)

2.3.4 Octet

The IDL typeoctet, an 8-bit quantity, is mapped as an unsigned quantity to the type
corba:octet . The type specifiecorba:octet denotes the set of integers betw@en
and255inclusive. This set can also be denoted by the type specifisighed-byte

8).

2.3.4.1 Usage example

2-4 Lisp Mapping V1.0 May 2000

(typep 255 ‘corba:octet)
>T

(typep -1 ‘corba:octet)
> nil

2.3.5 Wchar, Wstring

The typeswchar andwstring are mapped to Lisp types nameatba:wchar and
corba:wstring . The typecorba:wstring shall be a subtype of
corba:sequence whose constituents can be elements of tygda:wchar

2.3.6 string

The IDL string , both bounded and unbounded variants, are mappstling
Range checking for characters in gteng as well as bounds checking of the

string shall be done at marshal time. The type specdieba:string denotes
the set of Lispstrings

2.3.6.1 Usage example

(typep “A string” ‘corba:string)
>T

(typep nil ‘corba:string)

> nil

2.3.7 Integer Types

The integer types each map to the Liisggger type. Each IDL integer type has a
corresponding type specifier that denotes the range of integers to which it corresponds.
The names of the type specifiers ameba:long , corba:short , corba:ulong ,

corba:ushort , corba:longlong , andcorba:ulonglong .

2.3.8 Floating Point Types

The floating point typefloat, double , andlong double map to Lisp types named
corba:float , corba:double , andcorba:longdouble respectively. These
types shall be subtypes of the tygal . They shall allow representation of all
numbers specified by the corresponding CORBA types.

2.3.9 Fixed

The fixed point type is mapped to the Lisp type nawmtha:fixed . This type shall
be a subtype of the Lisp typational

Lisp Mapping V1.0 Mapping for Basic Types May 2000 2-5

2.4 Introduction to Named Types

We now discuss the mapping of types that are named. We begin with a discussion of
terminological issues.

2.4.1 Naming Terminology

Notation for naming can be confusing, so some care is needed. Our specification is not
formally rigorous, but we have tried to illustrate enough points with examples so that
situations likely to arise in practice can be handled.

2.4.1.1 IDL naming terminology

By the DL nameof an IDL entity we mean the string that is the simple name of that
entity.

An IDL entity can be declared at the top-level or nested inside some other IDL entity.
We say that the outer IDL entigncloseghe inner one.

We will sometimes elide the quotation marks in describing the names of IDL (and
other entities) when no confusion is likely to result.

Example:

module A{
interface B{
struct ¢ {long foo;};};}

The name of thetruct is the stringc. The name of theterface is the stringB. The
name of themodule is the stringA. The name of thetruct member is the strinfpo .
The innermost enclosing IDL entity of tls¢ruct is theinterface namedB. The
innermost enclosingnodule of thestruct is themodule namedA.

2.4.1.2 Lisp naming terminology
The nameof a symbol is a string used to identify the symbol.

Packagesre collections of symbols. A symbol hasi@me packagewhich also has a
name. A package can be named by a symbol or a string. We sometimes loosely say
“the package x” when we mean “the package named by x.” A package may have
nicknames and we will consider that the nicknames of a package name the package.

Unless otherwise stated, we will assume that distinct package names refer to distinct
packages.

Symbols are notated by prefixing the name of the home package of the symbol to the
character ‘' to the name of the symbol. Case is not significant when this notation is
used.

Thus, all symbols generated by this mapping are external symbols of their home
package.

Lisp Mapping V1.0 May 2000

2

A symbol can name a function, a package, a class, a type, a slot, or a variable. These
namespaces are disjoint.

All alphabetic characters in the names of symbols used in this document are upper-case
unless otherwise stated.

Thus, the names notated here are implicitly converted to uppercase when they name a
symbol.

For example, when we write
the symbol nametello-goodbye
or

the symbolhello-goodbye

we actually mean the symbol whose name is the string “HELLO-GOODBYE.”

2.5 Distinguished Packages

This document will refer to two kinds of packages:
1. A package that comprises those packages defined explicitly by this specification.

2. A package that comprises those packages created as a result of compiling user IDL
code.

The first kind of package consists of these three distinct packagesidthpackage
the corba packageand theFeature package

The names of these packages are described below.

® The name of the root package is the string “OMG.ORG/ROOT".

® The name of the corba package is “OMG.ORG/CORBA".

® The name of the Feature package is the string “OMG.ORG/FEATURE".

The precise semantics of these three packages is described below. Informally, the root
package is the package in which Lisp nhames corresponding to IDL definitions not
contained in a top-level module are interned. The corba package is the package in
which Lisp names corresponding to IDL definitions and pseudo-IDL definitions in the
CORBA module are interned. The Feature package is the package into which names of
Lisp functions corresponding to IDL operations are interned.

In addition, this specification makes use of the standard Common Lisp packages
named “KEYWORD” and “COMMON-LISP.”
2.5.1 Nicknames for Distinguished Packages

An implementation is expected to support the addition of nicknames for a package via
the standard common lisp nicknames facility. An ORB shall support the following
default nicknames:

Lisp Mapping V1.0 Distinguished Packages May 2000 2-7

2-8

® For the package “OMG.ORG/CORBA” the default nickname shall be “CORBA.”
® For the package “OMG.ORG/FEATURE" the default nickname shall be “OP.”

This document will use these nicknames without comment.

2.6 Scoped Names and Scoped Symbols

Many of the Lisp entities we consider will be named according to the scoped naming
convention described in this section. In particular, the following entities will be
mapped according to this naming convention:

® interface

® union

® enum

® struct

® exception

® valuetype

® abstract interface
® const

® typedef

A scoped symbol will be associated with the IDL entity, and it is this scoped symbol
that will name the Lisp value generated by the given IDL entity.

2.6.1 Definitions

For any named IDL entity there is a Lisp symbd called thescoped symbaf I.
The scoping separatois the string “/".
If 1 is a top-leveimodule, then the name & is the name of.

If 1 is amodule nested within anothenodule J, then the name a8 is the
concatenation of the name of the scoped symbd| tifie scoping separator, and the
name ofl.

The home package of the scoped symbol ofaalule is :keyword.

Supposd is a named IDL entity that is notnaodule. The name of the scoping symbol
Sof | is determined as follows.

® |f the declaration of is enclosed inside another IDL entilythat is not anodule,
then the name d is the concatenation of the name of the scoping symbdl, fibre
scoping separator, and the namd .obtherwise the name & is the name of.

® |f I is enclosed in anodule M, then the home package 8fis named by the scoped
symbol forM. Otherwise the home package ®is the root package.

Lisp Mapping V1.0 May 2000

2.6.1.1 Examples of scoping symbols

Consider the following IDL:

module a {
interface foo {};}

The scoped symbol of the module:és Thus, the home package of this symbol is
:keyword and the name of the symbol is the stridg™

The scoped symbol of the interface is the synebfdo. Thus, the name of the symbol
is the string “FOQ” and the home package of the symbol is the package whose name is
the string “A.”

Here is a more complex example of IDL:

module a {
interface outer {
struct inner {

in long member;};}:}

Here the scoped symbol for theodule is :a, the scoped symbol for theterface is
a:outer, and the scoped symbol fetruct is a:outer/inner .

Finally, another example:

module a{
module b{
interface c{
struct d{

long foo;};}:}}

The scoped symbol for thetruct is a/b:c/d . The scoped symbol for thetruct
member isa/b:c/d/foo .

2.7 The package prefix pragma

A package_prefixpragma has the form:

#pragma package_prefix string

wherestring is an IDL string literal. For example

#pragma package_prefix “COM.FRANZ-"

A package_prefix pragma affects the mapping of all top-level modules within its
scope as follows: the name of the scoping symbol for such a top-level module within
the scope of a package_prefix pragma is the concatenation of the given
package_prefix with the name of the module. The scope of the package_prefix

pragma follows the same rules as the scope of the prefix pragma defified in
Interface Repositorghapter of the CORBA Core specification.

Lisp Mapping V1.0 The package_prefix pragma May 2000 2-9

All OMG system IDL files, such as the IDL files for CORBA Services and CORBA
facilities, are considered to have been defined with an implastkage_prefix of
“OMG.ORG/". This name and convention was chosen to be consistent with the way in
which system repository ID specifiers are determined. Packages corresponding to
modules within the scope of such an impligétckage_prefix will have default
nicknames that are the name of the module without any prefix.

2.7.1 Example

2.7.1.1 IDL

#pragma package_prefix “COM.FRANZ-"
module a{

module b{

interface c{};};};

The scoped symbol for the interface®M.FRANZ-A/B:C .

2.8 Mapping for Interface

An IDL interface is mapped to a Lisplass . The name of thislass is the scoped
symbol for theinterface .

The direct superclasses of a generated Lisp class are determined as follows. If the
given IDL interface has no declared base interfaces, the generated class has the single
direct superclass namedrba:object.

Otherwise, the generated Lisp class has direct superclasses that are the generated
classes corresponding to the declared base interfaces of the given interface.

The Lisp valuenil can be passed wherever an object reference is expected.

An IDL interface is also mapped into server side classes. The server classes are
described in th&erver Sidenapping chapter of this specification.

2.8.1 Example

2.8.1.1 IDL

module example{
interface foo {};

interface bar {};

interface fum : foo,bar {};}

2.8.1.2 generated Lisp

2-10 Lisp Mapping V1.0 May 2000

(defclass example:foo(corba:object)())
(defclass example:bar(corba:object)())

(defclass example:fum (example:foo example:bar)())

2.8.2 Stub classes

An IDL interface named | generates a stub class whose name is the concatenation of
the name of the scoped symbol for | to the string "-PROXY" and whose package is the

package of the scoped symbol for I.

The direct superclasses of the -PROXY class corresponding to an interface | are
determined as follows. If | has no declared base interfaces, the generated class has the
direct superclasses, the Lisp class corresponding to interface I, and the class
corba:proxy. Otherwise the generated class has as direct superclasses the Lisp class
corresponding to interface | and the-PROXY classes corresponding to each of the

declared base interfaces of I.

2.8.2.1 Example

The stub classes generated for the IDL above are:

(defclass example:foo-proxy (example:foo corba:proxy))
(defclass example:bar-proxy(example:bar corba:object))

(defclass example:fum-proxy(example:fum example:foo-proxy example:bar-proxy))

The IDL and the Lisp in the example is represented non-normatively in UML in the

pair of figures below.

Object

H& T

example::foo

example::bar

T 1

example::fum

Figure 2-2 Non-normative UML for example 2.8.2.1, IDL

Lisp Mapping V1.0 Mapping for Interface

v

corba:object

corba:proxy

example:foo

| A

example:har |7}

£y

£y .

example:foo-proxy| |example:bar-prox

example:fum

ﬁ}‘ example:fum-proxy

Figure 2-3 Non-normative UML for example 2.8.2.1, IDL

2.9 Mapping for Operation

2-12

This section discusses only how the user is to invoke mapped operations, not how the
user is to implement them. The implementation of operations is discussedSerties
Sidemapping chapter of this specification. The contents of this section apply to
operations declared withimterfaces, abstract interfaces, andvaluetypes.

An IDL operation is mapped to a Lisp function named by the symbol whase
nameis given by the name of the operation interned in the Feature package.

We will assume that all operation names have been appropriately imported into the
current package in some examples.

Thus, when an example is given in which there is a reference to the symbol naming the
mapped function corresponding to an IDL operation, the package of that symbol will
be assumed to be the Feature package.

Lisp Mapping V1.0 May 2000

2.9.1 Parameter Passing Modes

The function defined by the IDL operation expects actual arguments corresponding to
each formal argument that is declaiador inout, in the order in which they are
declared in the IDL definition of the operation.

2.9.2 Return Values

The function defined by the IDL operation returns multiple values. The first (i.e., the
zeroth) value returned is that value corresponding to the declared return value, unless
the declared return value ¥®id. Following the value corresponding to the declared
return value, if any, the succeeding returned values correspond to the parameters that
were declareadut andinout, in the order in which those parameters were declared in
the IDL declaration.

Note that this implies that generated functions corresponding to operations declared
void which have neitheout norinout formal parameters return zero values.

2.9.3 One-way

Operations declarednewayare mapped according to the above rules.

2.9.4 Efficiency Optimization: Using macros instead of functions

A conforming implementation may map an operation to a macro whose name and
invocation syntax are consistent with the above mapping. For the sake of
terminological simplicity, however, this document will continue to refer to mapped
operations as “functions.”

2.9.5 Exception

An invocation of a function corresponding to a given IDL operation may result in the
certain conditions being signalled, including the conditions generated by the exceptions
declared in theaisesclause of the operation, if any. Such conditions are signalled in
the dynamic environment of the caller.

An invocation of a function may also result in the signalling of conditions
corresponding to system exceptions.

2.9.6 Context

For each context name declared by an operation, the operation accepts a single
additional argument whose type is a first-class context, accessed via the standard
Context accessors.

Lisp Mapping V1.0 Mapping for Operation May 2000 2-13

2.9.7 Example

2.9.7.1 IDL

module example {

interface face {

long sample_method (in long arg);

void voidmethod();

void voidmethod2(out short arg);

string method3 (out short argl,inout string arg2,in boolean arg3);

I3

2.9.7.2 generated Lisp

(defpackage :example)
(defclass example:face(corba:object)())

2.9.7.3 usage

; Suppose X is bound to a value of class example:face.
(sample_method x 3)

> 24

(voidmethod x)

> ; No values returned

(voidmethod2 x)

> 905 ; This is the value corresponding to the out arg
(method3 x “Argument corresponding to arg2” T)

> “The values returned” -23 “New arg?2 value”

; The Lisp construct multiple-value-bind can also be used to
recover these values.

(multiple-value-bind (result argl arg2)

(method3 x “Argument corresponding to arg2” T)

(list result argl arg2))

> (“The values returned” -23 “New arg?2 value”)

2.10 Mapping for Attribute

attribute is mapped using a naming convention similar to that for operation.

2.10.1 readonly attribute

An attribute that is declared with theeadonly modifier is mapped to methods whose
name is the name of the givattribute and whose home package is the Feature
package.

2-14 Lisp Mapping V1.0 May 2000

2

This method is specialized on the class corresponding to the IDL interface in which the
attribute is defined.

2.10.2 normal attribute

attribute s that are not declaredadonly are mapped to a pair of methods that follow
the convention used for default slot accessors generatddfblass

Specifically, a reader-method is defined whose name follows the convention for
readonly attributes. A writer is defined whose name(&etf name)wherenameis the
name of the defined reader-method.

2.10.3 Example

2.10.3.1 IDL

module example{

interface attributes {

attribute string attri;

readonly attribute long attr2;};}

2.10.3.2 Usage

;; Assume X is bound to an object of class example:attributes
(attr2 x)

> 40001

(attrl x)

> “Sample”

(setf (attrl x) “New value”)

(attrl x)

> “New value”

2.11 Mapping of Module

An IDL module is mapped to a Lispackagewhose name is the name of the scoped
symbol for thatmodule.

2.11.1 Example

2.11.1.1 IDL

interface outer_interface {};
module example {

interface inner_interface {};
module nested_inner_example {...
interface nested_inner_interface{};

Lisp Mapping V1.0 Mapping of Module May 2000 2-15

module doubly_nested_inner_example{...};
h
}

2.11.1.2 generated Lisp

(defpackage :example)

(defpackage :example/nested_inner_example)

(defpackage :example/nested_inner_example/doubly_nested_inner_example)
(defclass omg.root:outer_interface...)

(defclass example:inner_interface ...)

(defclass example/nested_inner_example:nested_inner_interface ...)

2.12 Mapping for enum

An IDL enum is mapped to a Lisp type whose name is the corresponding scoped
symbol.

Each member of thenum is mapped to a symbol with the same name as that member
whose home package is the keyword package.

2.12.1 Example

2.12.1.1 IDL

module example{
enum foo {hello, goodbye, farewell};

h

2.12.1.2 generated Lisp

(defpackage :example)
(deftype example:foo ()
‘(member :hello :goodbye :farewell))

2.12.1.3 usage

(typep :goodbye ‘example:foo)

>T

(typep :not-a-member ‘enumexample:foo)
> nil

2-16 Lisp Mapping V1.0 May 2000

2.13 Mapping for Struct

An IDL struct is mapped to a Lisp class whose name is the corresponding scoped
symbol. Each member of thstruct is mapped to an initialization keyword, a reader,
and a writer.

The initialization keyword is a symbol whose name is the name of the member and
whose package is the keyword package.

The reader is named by a symbol that follows the conventioretfdsute accessors.
In the case of a reader its package is the Feature package, and its name is the name ¢
the member.

The writer is formed by usingetf on the generalized place named by the reader.
The typecorba:struct is defined to be the union of all such generated types.

An IDL struct has a corresponding constructor whose name is the same as the name of
mapped Lisp type. This constructor takes keyword arguments whose package is the
keyword package and whose name equals the name of the corresponding member.

2.13.1 Example

2.13.1.1

2.13.1.2

2.13.1.3

IDL

module structmodule{
struct struct_type {
long field1;

string field2;

hY

generated Lisp

(defpackage :structmodule)

(defclass structmodule:struct_type (corba:struct)
((field1 ...)

(field2 ...)))

usage

(setq struct (structmodule:struct_type
:field1 100000

:field2 “The value of field2"))

(field1 struct)

> 100000

(setf (field1 struct) -500)

(field1 struct)

> -500

Lisp Mapping V1.0 Mapping for Struct May 2000 2-17

2

2.14 Mapping for Union

2-18

An IDL union is mapped to a Lisplass named by the corresponding scoped
symbol. This class inherits frooorba:union.

The value of the discriminator can be accessed using the accessor function named
union-discriminator whose home package is the Feature package and an initialization
argument namedinion-discriminator .

The value can be accessed using the accessor function nzadvalue in the
Feature package with initialization argumesmion-value.

An IDL union has a corresponding constructor whose name is the same as the name of
the type. This constructor takes two constructors whose namesnioa-value and
:union-discriminator .

2.14.1 Member Accessors

Each union member has an associated constructor and accessor.

The symbol-name of the name of the constructor corresponding to a particular member
is the concatenation of the name of the union constructor to the scoping separator to
the name of the member. The home package of the name of the constructor
corresponding to a particular member is the home package of the name of the union
constructor.

A constructor corresponding to a member takes a single argument, the value of the
union. The discriminator is set to the value of the first case label corresponding to that
member.

It is an error if a member reader is invoked on a union whose discriminator value is not
legal for that member. The member writer sets the discriminator value to the first case
label corresponding to that member.

The default member is treated as if it were a member named default whose case labels
include all legal case labels that are not case labels of other members in the union.

2.14.2 Example

2.14.2.1

IDL

module example {

enum enum_type {first,second,third,fourth,fifth};
union union_type switch (enum_type) {

case first: long win;

case second: short place;

case third:

case fourth: octet show;

default: boolean other;

Lisp Mapping V1.0 May 2000

bk
2.14.2.2 generated Lisp

(defpackage :example)
(defclass example:union_type (corba:union)

()

2.14.2.3 Usage

(setq union (example:union_type
:union-discriminator :first
:union-value -100000))

(union-value union)

> -100000

(union-discriminator union)

> FIRST

(setq same-union (example:union_type/win -100000))
(union-discriminator same-union)
> FIRST

(setf (show same-union) 3)
(union-discriminator same-union)
> THIRD

(show same-union)

>3

(setf (default same-union) nil)
(union-discriminator same-union)
> :FIFTH

2.15 Mapping for const

An IDL const is mapped to a Lisponstant whose name is the scoped symbol
corresponding to thatonstand whose value is the mapped version of the
corresponding value.

2.15.1 Example

2.15.1.1 IDL

module example {
const long constant = -321;

h

Lisp Mapping V1.0 Mapping for const May 2000 2-19

2.15.1.2 Generated Lisp

(defpackage :example)
(defconstant example:constant -321)

2.16 Mapping for array

An IDL array is mapped to a Lisprray of the same rank. The element type of the
mappedarray shall be a supertype of the Lisp type into which the element type of the
IDL array is mapped.

Multidimensional IDL arrays are mapped to multidimensional Lisp arrays of the same
dimensions.

2.16.1 Example

2.16.1.1 IDL

module example {
typedef short array1[2][3];
interface array_interface{

arrayl op();}}

2.16.1.2 Generated Lisp

(defpackage :example)

(deftype example:arrayl () '(array (2 3)))
;; mapping for the interface...

(defclass example:array_interface...)

2.16.1.3 usage

(setq a2 (op x)) ; Get an array
(arefa2 0 1) ; Access an element
> 3 ; Just an example, could be any value that is a short

2.17 Mapping for sequence

An IDL sequence is mapped to a Lispequence . Bounds checking shall be done
on boundedsequencs when they are marshaled as parameters to IDL operations and
an IDL CORBA::MARSHAL exception shall be raised if necessary.

An implementation is free to specify the type of the mapped list more specifically.

Supposdoo is an IDL data type and l&t be the corresponding Lisp type.

2-20 Lisp Mapping V1.0 May 2000

2

This means that anywhere a parameter of sgouence<foosis expected, either a
vector all of whose elements are of typeor alist all of whose elements are of type
L may be passed.

Conversely, when suchsequences returned from an operation invocation, this
document specifies no type restriction on the returned value other than that it is a
sequenceall of whose elements are of type

Note —In practice, it is likely that an ORB will marshal and unmarsesjuenceas
appropriately specializegector unless the user provides specific information that this
behavior is not desired.

2.17.1 Example

2.17.1.1 IDL

module example {

typedef sequence< long > unbounded_data;
interface seq{

boolean param_is_valid(in unbounded_data arg);
h

h

2.17.1.2 Generated Lisp

(defpackage :example)

(defun unbounded_data_p (sequence)
(and (typep sequence ‘sequence)
(every #'(lambda(elt)

(typep elt ‘corba:long)))

(deftype example:unbounded_data()
‘(satisfies unbounded_data-p))

; Let x be an object of type example:seq
(param_is_valid x ‘(-2 3))

>T

(param_is_valid x #(-200 33))

>T

2.18 Mapping for Exception

Each IDL exception is mapped to a Lisp condition whose name is the scoped symbol
for that exception. User exceptions inherit from a condition named
corba:userexception. exceptions a subclass aferious-condition.

Lisp Mapping V1.0 Mapping for Exception May 2000 2-21

condition

1

serious-condition

S B

error corba:exception

corba:systemexception corba:userexception

Figure 2-3 Lisp condition hierarchy

System exceptions inherit from a condition narnetha:systemexceptionwhich also
inherits from the conditiorrror.

Both corba:userexceptionand corba:systemexceptiorninherit from the condition
corba:exception corba.systemexceptioralso inherits from the conditioerror.

2.18.1 User Exception

The reader functions and initialization arguments for a condition generated by an IDL
exceptionfollow the convention for the mapping of IDdtructs.

2.18.1.1 Example

Consider the following IDL:

module example {
exception ex1 { string reason; };

o

The Lisp corresponding to this fragment might look like the following:

2-22 Lisp Mapping V1.0 May 2000

(defpackage :example)

(define-condition example:ex1 (corba:userexception)
((reason :initarg :reason ...))

; Usage example

(error (example:ex1 :reason “Example of condition”))

2.18.2 System Exception

The standard IDL systemxceptiors are mapped to Lisponditions that are
subclasses aforba:systemexception Such generateconditions have reader-
functions and initargs consistent with the IDL definition of thegseeptiors.

2.19 Mapping for typedef

IDL typedef is mapped to a Lisp type whose name is the scoped symbol
corresponding to thaypedef

This name of this type denotes the set of Lisp values that correspond to the Lisp type
that is generated by the mapping of the IDL type to whichtythedef corresponds.

However, it is not required to perform recursive checking of the contents of constructed
types likearray, sequence andstruct.

2.19.1 Example

2.19.1.1 IDL
module example{

typedef unsigned long foo;
typedef string bar;

2.19.1.2 generated Lisp
(defpackage :example)

(deftype example:foo () ‘corba:unsigned-long)
(deftype example:bar() ‘string)

2.19.1.3 Usage example

(typep -3 ‘example:foo)

> nil

(typep 6000 ‘example:bar)
> nil

(typep “hello” ‘example:bar)
>T

Lisp Mapping V1.0 Mapping for typedef May 2000 2-23

2

2.20 Mapping for any

The IDL typeany represents an IDL entity with an associated typecode and value. It is
mapped to the typeorba:any , which encompasses all Lisp values with a
corresponding typecode.

2.20.1 Constructors

The constructocorba:any takes two keyword arguments nameaty-value andany-
typecode If any-typecodeis specified, themny-valueshall be specified. lany-value
andany-typecodeare each specified, theany-value shall be a member of the type
denoted byany-typecode

An any may also be created via the invocation:

(corba:any :any-typecode val :any-value type)

2.20.2 Typecode accessor

The actual typecodef a Lisp valuev is defined as follows.

IF ... THEN

v is avaluetype the default coercion rules specified below may
be overridden by the ORB.

v was created by an invocation ofthe actual typecode ofis theany-typecode
corba:any argument supplied toorba:any.

Vv is an integer the actual typecodevofs the typecode of the
smallest integer type that of whiehis an
instance. Specifically i¥ is of type
corba:unsignedlonglongor corba:longlong,
then the actual typecode wofis the typecode
that describes the first Lisp type among
(corba:short, corba:ushort, corba:long,
corba:ulong, corba:longlong,
corba:ulonglong) of whichv is a member.

Otherwise ifv is a member otorba:float,
corba:double, or corba:longdouble then the
actual typecode of is corba:tc_float
orcorba:tc_double or corba:tc_longdouble
respectively.

Otherwise ifv is achar then the actual
typecode ofv is corba:tc_char.

Otherwise ifv is a string designator then the
actual typecode of is corba:tc_string.

Otherwise ifv is a boolean then the actual
typecode of v igorba:tc_boolean

2-24 Lisp Mapping V1.0 May 2000

Otherwise ifv is anarray then then the actua
typecode ofv a typecode describing an array
compatible with the contents of

11}

Otherwise ifv is alist then the actual typecod
of v is a typecode describingsequence
compatible with the contents of

Otherwise ifv is an instance oforba:object,
corba:struct, corba:valuebaseor
corba:union, then the actual typecode is the
typecode describing thiaterface, struct,
valuetypeor union of whichv is an instance.
(Such av is said to beself-typing.

(corba:any-typecode v)is defined to resolve to the actual typecode.of

2.20.3 value accessor

If v is a number, a string, a sequence, a boolean, or an instancebafenum,
corba:object, corba:valuetype, corba:struct or valuetype, thefcorba:any-value v)
evaluates to a value thatds|l to v.

Otherwise, ifv is anany created via a call to theorba:any constructor, then
(corba:any-value v)resolves to thany-value specified in that call.

Otherwise the ORB may signalGORBA:BAD_PARAM exception. This might be
necessary, for example, if the ORB received an any containing an instans¢roéta
type for which it does not have enough static information to construct a value of that
type. In this case, the value of thay can be accessed through thgnAny pseudo
interface.

2.20.4 Interaction with GIOP

For the purpose of GIOP marshalling, a Lisp entity is considered to have the typecode
and value corresponding to its actual typecode and actual value.

For example, consider the following IDL:

module example{
interface any_example{
void foo (in any val);};}

Now suppose that is bound to a proxy for a remote implementation of the
example::any_exampleinterface and suppose requests are forwarded over GIOP to
the remote object.

An invocation

(op:foo x 3)

Lisp Mapping V1.0 Mapping for any May 2000 2-25

will forward to the remote implementation a request to invoke the “foo” method with
single parameter aany whose typecode is the typecode for octet and whose value is
the integer 3.

However, an invocation

(op:foo x (corba:any :any-typecode corba:tc_longlong :any-
value 3))

will forward to the remote implementation a request to invoke the “foo” method with
single parameter aany whosetypecodeis the typecode folong long and whose
value the integer 3.

Thus, the default coercion rules fany may be overridden as necessary.

Furthermore, th®ynAny pseudo interface provides an alternative way to access the
values in arany.

2.20.5 Additional examples of any usage

(corba:any-typecode 3)

> <octet typecode>

(corba:any-typecode -1)

> <short typecode>

(corba:any-typecode “foo”)

> <string typecode> ; could also be typecode for an array.
(corba:any-value “foo”)

> “foo”

2.21 Mapping for valuetype

2-26

An IDL valuetype is mapped to a Lisp class whose name is the scoped symbol for
that type.

2.21.1 Inheritance of valuteype

If a valuetypeA inherits from a valuetyp8, the generated Lisp class farshall be a
subclass of the generated Lisp classBor

2.21.1.1 Example

The IDL

module example{
valuetype b {};
valuetype a : b {};

corresponds to the Lisp classes:

Lisp Mapping V1.0 May 2000

(defclass example:b(corba:ValueBase)())
(defclass example:a (example:b)())

2.21.2 Valuetypes supporting interfaces

If a valuetypeA supports an interface (or abstract interfa@gdhen the generated Lisp
class forA shall be a subclass of the generated Lisp clasB for

2.21.2.1 Example

The IDL

module example {
interface | {};
valuetype a supports | {};};

corresponds to the Lisp:

(defclass example:l (corba:Object)())
(defclass a (corba:ValueBase example:l)())

2.21.3 Base class for valuetype

If a valuetypeA is not declared to inherit from any other valuet@ehen the
generated Lisp class correspondingAtahall be a subtype of the Lisp class nhamed
corba:ValueBase

2.21.3.1 Example

The IDL:

module example {
valuetype foo (){};
%

corresponds to the Lisp:

(defclass example:foo (corba:ValueBase)())

2.21.4 Valuetype members

The mapping for valuetype members is based on the mapping for StructuralFeature.

Each member of the given valuetype is mapped to a slot whose name is the symbol

whose print-name is the uppercased name of the member and whose package is the
Feature package. This slot has an associated initializer keyword whose name is the

uppercased name of the member and whose package is the keyword package.

Lisp Mapping V1.0 Mapping for valuetype May 2000 2-27

Each member of thealuetypeis in addition mapped to a pair of accessors of the
generated class using the same naming convention as for struct members: a reader
whose name is the name of the associated slot and whose package is the Feature
package and a writer whose name is the list witasés the symboketf and whose

cdr is the symbol that names the associated slot.

2.21.4.1 Example

Consider the IDL:

module example {
valuetype A {

long long b;

short c;

private string d;};};

If x is bound to an instance of example:a, then an invocation sequence might be:

(op:b x)

--->-400000000

(setf (op:b x) 500000000000000)
(op:b x)

---> 500000000000000

(op:c x)

--->-100

(slot-value x 'op:x)

--->-100

(slot-value x 'op:d)

"Sample private member value"

2.21.5 Valuetype operations

An operation declared within a valuetype is mapped to a Lisp function using the same
naming convention as for operations declared on interfaces.

An operation may be implemented using tweba:define-methodmacro.

2.21.5.1 Example

Consider the following IDL:

module M {
valuetype A {
long foo (in string s);};

If X is bound to an instance of class M:A, then the following is a sample invocation
sequence:

2-28 Lisp Mapping V1.0 May 2000

(op:foo x "input")
--->-200

2.21.6 Boxed values

SupposeB is the name of an IDL valuetype that is a boxed value for an IDL M/pe

If M is a primitive type, them corresponds to a Lisp type whose name is the scoped
symbol forB and which holds a single member nangeda. OtherwiseB is mapped to

the type whose name is the scoped symboBfand which denotes the type of the
Lisp type corresponding til.

2.21.7 Value factory

The IDL native typeCORBA::ValueFactory maps to the Lisp clasdass

Each implementation of a valuetype is associated with a keyword defined on the
shared-initialize method for that class:

If the value of thecreate-for-unmarshal keyword is nonail, the shared-initialize
method is to be executed in the context of unmarshalling an instance of that type by
the ORB; this corresponds to theeate for_unmarshalpseudo-operation. The

value of this keyword shall be set to noth-only by the ORB: users may not

portably invokeshared-initialize with non-nil value of this keyword parameter.

Otherwise, if the value of théactory keyword is nomil it shall be a symbol

whose print-name is the (uppercased) name of an initializer for that valuetype. The
parameters of the initializer are specified as the values of the keyword parameters
whose print-names correspond to the uppercased names of the names of those
parameters.

Otherwise, if the value of théactory keyword isnil or if it is unbound, then the
remaining keyword initializers are treated as slot initializers (which are defined by
the mapping for the valuetype’s declaration) or as other user-defined keyword
initializers.

Each nonabstract valuetype is associated with a default constructor whose name is
the name of that symbol and which signalsearor if the value of thefactory
keyword parameter is namit.

2.21.7.1 Examples

Consider the following IDL:

module example {
valuetype A {

string bar;

boolean fum;
factory c (in long x);

bk

An instance of this valuetype may be created via the call

Lisp Mapping V1.0 Mapping for valuetype May 2000 2-29

2-30

(make-instance 'example:A :bar "hello" :fum T)

A user class B can provide a factory implementation by specifying the behavior of
forms like:

(make-instance 'B :factory 'c :x 898)

2.21.8 Unmarshalling Issues

When the ORB unmarshals a valuetype for a request, it tries to find the class that
corresponds to that valuetype via O&B::lookup_value_factory operation. If the
factory lookup succeeds, the instance is instantiated by invoking the constructor
associated with that factory.

If the factory lookup fails, then if the repository ID begins with stiiDg: , the

associated factory is that corresponding to the symbol that names the valuetype whose
generated repository ID is the same as that repository ID. If such a valuetype class
exists and is noabstract, an instance of that class is unmarshalled using the default
factory for that valuetype class.

Otherwise th€CORBA::MARSHAL exception is signalled back to the client.

2.21.9 Mapping for Abstract Valuetypes

The Lisp class corresponding to an abstract valueyethe class corresponding to
the valuetypeaB’ in the IDL formed from the original IDL definition of B by removing
the abstract specifier. It is an error if the user directly instantiates such a class.

2.21.9.1 Mapping for abstract interface

The mapping forbstract interface is the same as the mapping foterface except
that each abstract interface inherits from the ctasba:abstractbase the mapping
for the native typeCORBA::AbstractBase. Neither generated servant nor proxy
classes inherit fronCORBA:AbstractBase however. The claseorba:abstractbase
inherits fromcorba:Object.

When used as the declared base class of an interface declaration, the mapping for that
interface is treated exactly as if the abstract interface were an interface.

Similarly, when a valuetype is declared to support an abstract interface, the abstract
interface is treated as an interface.

It is an error if the user directly instantiates such a class.

Lisp Mapping V1.0 May 2000

2.21.10 Example

2.21.10.1 IDL

module example{

abstract interface foo({};

abstract interface bar {};

abstract interface fum : foo, bar {};
interface ¢ :fum {};

valuetype d supports fum{};

2.21.10.2 Generated Lisp

(defclass example:foo(CORBA:AbstractBase)())

(defclass example:bar(CORBA:AbstractBase)())

(defclass example:fum (example:foo example:bar)())
(defclass example:c (example:fum))

(defclass example:d (corba:valuebase example:fum-servant))

2.22 Custom Valuetypes

Valuetypes declared azistom shall inherit from the clas€ ORBA:customMarshal.
This class, and the associat@dtaOutputStream and DatalnputStream classes, are
mapped according to their definition in OMG IDL. The user implementation shall
implement theop:marshal andop:unmarshal operations declared in
CORBA:customMarshal in order to implement custom marshalling and
unmarshalling.

Lisp Mapping V1.0 Custom Valuetypes May 2000 2-31

2-32 Lisp Mapping V1.0 May 2000

Mapping Pseudo-Objectsto Lisp

Contents

This chapter contains the following sections.

Section Title Page
“Introduction” 3-2
“Rules for Mapping Pseudo-objects” 3-2
“Certain Exceptions” 3-3
“Environment” 3-3
“NamedValue” 3-3
“NVList” 3-4
“Context” 3-4
“Request” 3-4
“Dynamic Invocation Interface” 3-5
“ServerRequest” 3-6
“ORB” 3-8
“Object” 3-12
“DynAny” 3-13
“The IDL Compiler” 3-13

Lisp Mapping V1.0 May 2000

3-2

3.1

Introduction

Pseudo-objectare constructs whose definition is usually specified in “IDL,” but whose
mapping is language specified. A pseudo-object is not (usually) a regular CORBA object.

For each of the standard IDL pseudo-objects we either specify a specific Lisp language
construct or we specify it agggeudo interface

This mapping of the pseudo objects was modeled after that in the Java mapping.

3.1.1 Pseudo Interface

The use opseudo interfaceis a convenient device, which means that most of the stan-
dard language mapping rules defined in this specification may be mechanically used to
generate the corresponding Lisp values. However, in general the resulting construct is not
a CORBA object. Specifically:

® |t is not represented in the Interface Repository.

® |t may not be passed as a parameter to an operation expecting a CORBA Obiject.
® |t may not be returned as a CORBA Obiject.

® It may not be stored in amy.

® |t may not be portably subclassed by user code, if it is represented as a class.

Note —The specific definition given for each piece of PIDL may override the general
guidelines above. In such a case, the specific definition takes precedence.

3.2 Rules for Mapping Pseudo-objects

Unless otherwise indicated below, an OMG-defined pseudo-object defined by pseudo-IDL
corresponds by default mapped to a Lisp class whose name is given by the scoped symbo
corresponding to that pseudo-interface. Each pseudo-operation is mapped to a function
whose name follows the corresponding rules for mapping of operations of interface.

3.2.1 Example

Considering the following pseudo-IDL.:

module fum {

pseudo interface foo {
long bar (in string x);
h

h

The FOO pseudo-interface would correspond to a Lisp type naimefibo. Evaluation of
the form(bar x "hello") would return a value of typeorba:long if x is of typefum:foo.

Lisp Mapping V1.0 May 2000

3.3 Certain Exceptions

The standard CORBA PIDL uses several exceptiBainds, BadKind, andlnvalid-
Name.

These are mapped as if they were standard user exceptions and inhecitfoamiserex-
ception.

TheBounds andBadKind exceptions map to conditions nametha:type-
code/bounds andcorba:typecode/BadKind The Bounds exception is named
corba:Bounds. This follows the usual mapping for the IDL defined in the CORBA core
specification.

3.4 Environment

TheEnvironment is used in request operations to makeeptioninformation available.

Sinceconditionsin Lisp are first class objects, we defiBavironment simply as an
exception

(deftype corba:environment() ‘corba:exception)

3.5 NamedValue

A NamedValuedescribes a hame, value pair. It is used in the DIl to describe arguments
and return values, and in thentextroutines to pass property, value pairs.

We map this to a class nam€®RBA:NamedValue via the following PIDL in module
CORBA:

typedef unsigned long Flags;
typedef string Identifier;

const Flags ARG_IN =1;

const Flags ARG_OUT = 2;
const Flags ARG_INOUT = 3;
const FLAGS CTX_RESTRICT_SCOPE = 15;
pseudo interface NamedValue{
attribute Identifier name;
attribute any argument;
attribute long len;

attribute Flags arg_modes;};

There is a corresponding constructor naf@&@RBA:NamedValue that takes keyword
initializersname, argument, andFlags. The default value of thelagskeyword initializer
is corba:ARG_IN. The default value of theamekeyword is the empty string

"™ _ForOUT parameter, portable applications shall setatfyriment attribute of a
NamedValueto nil (i.e., the functionality in which a®UT argument parameter is set to
point to a non-null storage pointer is not supported in this mapping).

Lisp Mapping V1.0 Certain Exceptions May 2000 3-3

3.6 NVList

An NVList is used in the DIl to describe arguments and in the context routines to describe
context values. AINVList is mapped to the typ@ORBA:NVList , which denotes the

type of proper lists each of whose elements are of @PRBA:NamedValue. The stan-

dard list manipulation routines may be used to create such a listrddte _|list,

get_count andadd_item pseudo-operations are not mapped (this functionality is pro-
vided implicitly by Lisp list operations).

3.6.1 Example

(setq x

(list

(corba:NamedValue :name "test" :argument nil)
(corba:NamedValue :name "test2" :argument
(corba:any :any-value 4 :any-typecode corba:tc_long)
:flags corba:ARGS_INOUT))

(typep x 'corba:NamedValue)

—>T

3.7 Context

A Contextis used in the DIl to specify@ntextin which contextstrings shall be
resolved before being sent along with the request invocation.

It is mapped to a clag®rba:contextwhose operations are as specified in the PIDL for
this class.

pseudo interface Context {

readonly attribute Identifier context_name;

readonly attribute Context parent;

Context create_child (in Identifier child_ctx_name);

void set_one_value (in Identifier propname, in any propvalue);
void set_values (in NVList values);

void delete_values (in Identifier propname);

NVList get_values (in Identifier start_scope,

in Flags op_flags,

in Identifier pattern);

3.8 Request

A Requestis mapped to an instance of cl@&9RBA:request according to the IDL:

pseudo interface Request {

readonly attribute Object target;
readonly attribute Identifier operation;
readonly attribute NVList arguments;
readonly attribute NamedValue result;

Lisp Mapping V1.0 May 2000

attribute Context ctx;

any add_in_arg();

any add_named_in_arg (in string name);
any add_inout_arg();

any add_named_inout_arg(in string name);
any add_out_arg(in string name);

any add_named_out_arg(in string name);
void set_return_type(in TypeCode tc);
any return_value();

void invoke();

void send_oneway();

void send_deferred();

void get_response();

boolean poll_response();

The corresponding constructor is nantedba:requestand takes keyword initializers
target, operation, arguments, andctx. The value of thetx attribute defaults to the cur-
rent context.

3.8.1 Example
Supposétypep x 'corba:Reques).
Then the invocation:
(op:target x);

shall return the instance obrba:Object that is the target of the request, goderation
x) shall return the string that is the value of tiperation attribute ofx.

3.9 Dynamic Invocation Interface

3.9.1 Dynamic Invocation Interface Convenience Function
The following function is provided as a convenience interface to the DII.
The functioncorba:funcall with syntax:
corba:funcall operation-designator targetrest params

invokes the operation named by thperation-designatoon the object denoted by tke
getparameter with parameters tharams

targetshould be an instance obrba:Object
Operation-designatoshould be a symbol or a string.

An operation-designatodenotes a particular declared IDL operation. If it is a string, it
must be either the name of the operation or the fully scoped IDL name of the operation.

If it is a symbol in theOP package or thkeywordpackage, it denotes the operation whose

Lisp Mapping V1.0 Dynamic Invocation Interface May 2000 3-5

uppercased name is the print-name of that symbol. Otherwisgpé¢ihation-designatois
interpreted as the "full scoping symbol" for the operation.The module in which the opera-
tion is declared corresponds to the name of the package of the symbol, and the name is o
the form interface-name/operation-name, where interface-name is the uppercased-name o
the interface (or abstract interface) in which the operation is declarezparation-name

is the uppercased-name of the operation.

If target is not local and dorba:funcallis unable to determine the actual signature of the
operation in sufficient detail to marshal the arguments, the condition
CORBA:FUNCALL_MARSHAL shall be thrown. This exception shall inherit from
CORBA:MARSHAL.

The values returned and the exceptions signallembya:funcall shall be consistent with

the standard mapping for operation: if the operation completed successfully, the result and
all out or inout parameters are returned in order of their declaration; otherwise, the excep-
tion signalled by the operation is returned.

3.9.2 Example

Consider the following IDL:

module outer {

module inner {

interface A {

exception tt {string x;}

void foo();

string fum (in long long bar) raises (it);

short st(in char s, inout boolean y, out float z)

h
Suppose target is bound to an instanceudér:inner/a.

Then sample invocations might look like this:

(corba:invoke "foo" target)
--->[no values returned]

(corba:invoke "outer::inner::A::fum" target -31415926)
--->"P|"

(corba:invoke 'op:fum target -100)
---->[condition of type outer:inner/tt]

(corba:invoke 'outer/inner:a/st #\B nil)
---->134T 1.34

3.10 ServerRequest

ServerRequestis used in the DSI. It is to be mapped according to the IDL to the Lisp
class name€ORBA:ServerRequest

3-6 Lisp Mapping V1.0 May 2000

pseudo interface ServerRequest{
readonly attribute Identifier operation;
Context ctx();

void arguments(inout NVList nv);

void set_result (in any val);

void set_exception (in any ex);

3.10.1 Example

Suppose is bound to an object of cla8ORBA:ServerRequest Then the invocation
(op:operation x) returns the string representing the operation corresponding to the
request.

Additional detail on the use &erverRequest is given in the “Server-Side” chapter of
this document.

3.10.2 TypeCode

A TypeCodeis an instance of the class nan@dRBA:TypeCode. It follows the pseudo
IDL below.

module CORBA({

enum TCKind{

tk_null, tk_void, tk_short, tk_long, tk_ushort, tk_ulong, tk_float, tk_double,
tk_boolean, tk_char, tk_octet, tk_any, tk_TypeCode, tk_Principal, tk_objref,
tk_struct, tk_union, tk_enum, tk_string, tk_sequence, tk_array, tk_alias,
tk_except,

tk_longlong, tk_ulonglong, tk_longdouble, tk_wchar, tk_wstring, tk_fixed,
tk_value,tk_value_box,tk_native,tk_abstract_interface};

typedef short ValueModifier;

const ValueModifier VM_NONE=0;

const ValueModifier VM_CUSTOM=1;

const ValueModifier VM_ABSTRACT=2,;
const ValueModifier VM_TRUNCATABLE=3;

typedef short Visibility;

const Visibility PRIVATE_ MEMBER=0;
const Visibility PUBLIC_MEMBER=1;
h

pseudo interface TypeCode {
exception Bounds{};

exception BadKind{};

boolean equal (in TypeCode tc);
boolean equivalent (in TypeCode tc);
TypeCode get_compact_typecode();

TCKind kind();

Repositoryld id() raises (BadKind);
Identifier name() raises (BadKind);

Lisp Mapping V1.0 ServerRequest May 2000 3-7

[lfor struct, union, enum, value, value_box, and except
unsigned long member_count() raises (BadKind);
Identifier member_name(in unsigned long index) raises (BadKind, Bounds);

[lfor struct, union, value, value_box, and except
TypeCode member_type (in unsigned long index) raises (BadKind, Bounds);

/lfor union

any member_label(in unsigned long index) raises (BadKind, Bounds);
TypeCode discriminator_type() raises (BadKind);

long default_index() raises (BadKind);

[lfor string, sequence, and array
unsigned long length() raises (BadKind);
TypeCode content_type() raises (BadKind);

[lfor fixed
unsigned short fixed_digits() raises (BadKind);
short fixed_Scale() raises (BadKind);

/lfor value

Visibility member_visibility (in unsigned long index) raises (BadKind,
Bounds);

ValueModifier type_modifier() raises (BadKind);

TypeCode concrete_base_type() raises (BadKind);

bk

TheTypeCodepseudointerface maps to the lisp class naceeda: TypeCode The oper-

ations defined on this class follow the pseudo-IDL above.

3.10.3 Example

3.11 ORB

3-8

3.11.1 ORB

Supposéc is bound to a typecode representirgfract with the three members.

(op:member_count tc)
--->3
CORBA:VM_CUSTOM
-—-->1

initialization
The pseudo-IDL for ORB initialization is:
module CORBA {

typedef string ORBId;
typdef sequence<string> arg_list;

Lisp Mapping V1.0 May 2000

ORB ORB_init(inout arg_list argv, in ORBId orb_identifier);
h

The ORB_init pseudo-operation is mapped to a function na@@&&kBA:ORB_init .
Evaluation of(corba:orb_init argv orb_identifier) returns an instance of the
CORBA:ORB class and a sequence of strings waegv is a sequence of strings and
orb_identifier is a string. The semantics of the argumeangs, orb_identifier, and the
returned values follow the definitions of these values in the CORBA specification.

Evaluation ofcorba:orb_init) returns the ORB object that would be returned by invoking
(corba:orb_init nil ")

3.11.2 Example

(CORBA:ORB._init :orb_identifier "My ORB" :vendor-extension-key "Vendor-extension")

(CORBA:ORB._init)

3.11.3 ORB pseudo-object

The ORB pseudo-interface is mapped to a class n&@RBA:ORB. The operations
defined on the class follow the rules for mapping pseudo-IDL. The pseudo-IDL below is
intended to follow the pseudo IDL given in the CORBA specification.

module CORBA({
exception PolicyError{PolicyErrorCode reason;};

typedef string Repositoryld;
typedef string Identifier;

typedef unsigned short ServiceType;
typedef unsigned long ServiceOption;
typedef unsigned long ServiceDetailType;

const ServiceType Security = 1;

struct ServiceDetail{
ServiceDetailType service_detail_type;
sequence<octet> service_detail;

I3

struct Servicelnformation{
sequence<ServiceOption> service_options;
sequence<ServiceDetail> service_details;
h

pseudo interface ORB {

typedef string Objectlid;

typedef sequence <Objectld> ObjectldList;

Lisp Mapping V1.0 ORB May 2000 3-9

3-10

exception InvalidName {};

string object_to_string(
in Object obj
);

Object string_to_object(
in string str;

);

/[Dynamic Invocation related operations
void create_list(

in long count;

out NVList new_list

);

void create_operation_list(
in OperationDef oper,
out NVList new_list

);

void get_default_context(
out Context ctx

);

void send_multiple_requests_oneway(
in RequestSeq req
)i
void send_multiple_requests_deferred(
in RequestSeq req

)i
boolean poll_next_response();

void get_next_response(
out Request req

);
//Service information operations
boolean get_service_information (

in ServiceType service_type,
out Servicelnformation service_information

);
ObjectldList list_initial_services();
/lInitial reference operation

Object resolve_initial_references(
in Objectld identifier

Lisp Mapping V1.0 May 2000

) raises (InvalidName);
/[Type code creation operations

TypeCode create_struct_tc (

in Repositoryld id,

in Identifier name,

in StructMemberSeq members
)i

TypeCode create_union_tc(

in Repositoryld Id,

in Identifier name,

in TypeCode discriminator_type,
in UnionMemberSeq members

);

... [The other Typecode creation operations exactly follow the pseudo IDL given in the
CORBA specification and are elided here].

/[Thread related operations

boolean work_pending();

void perform_work();

void run();

void shutdown(in boolean wait_for_completion);
void destroy();

/IPolicy related operations
Policy create_policy(

in PolicyType type,

in any val) raises (PolicyError);

/IValue factory operations
ValueFactory register_value_factory(
in Repositoryld id,

in ValueFactory factory

);

void unregister_value_factory(in Repositoryld id);
ValueFactory lookup_value_factory(in Repositoryld id);

3.11.4 Example

Supposdtypep orb 'CORBA:ORB) is T. Then the following invocations may be made:

(work_pending orb)

Lisp Mapping V1.0 ORB May 2000 3-11

3.12 Object

3-12

(run orb)

The IDL Object type is mapped to the cla€ORBA:Object. It supports the operations
defined in the pseudo-IDL below. The semantics of a pseudo-operation defined in the
pseudo IDL below follow the semantics defined in the CORBA specification for the
pseudo-operation whose name is the given pseudo-operation with the prepended under-
score elided.

The _is_nil pseudo operation is mapped to the standard Common Lisp functilon

Theduplicate andreleasepseudo-operations are unnecessary in the Lisp mapping and are
not mapped.

module CORBA({

interface DomainManager; //forward declaration

typedef sequence<DomainManager> DomainManagersList;
interface Policy //forward declaration

typedef unsigned long PolicyType;

interface Context; //forward declaration

typedef string Identifier;

interface Request; //forward declaration;

interface NVList; //forward declaration;

struct NamedValue{}; //an implicitly well-known type

typedef unsigned long Flags;

interface InterfaceDef; //forward declaration

enum SetOverrideType{SET_OVERRIDE, ADD_OVERRIDE}

pseudo interface Object{

InterfaceDef get_interface();

boolean _is_nil();

boolean _is_a(in string logical_type_id);
boolean _non_existent();

boolean _is_equivalent(in Object other_object);
unsigned long _hash (in unsigned long maximum);
void _create_request(

in Context ctx,

in Identifier operation,

in NVList arg_list,

inout NamedValue result,

out Request request,

in Flags req_flags);

Policy _get_policy(in PolicyType policy_type);
DomainMangersList _get_domain_managers();
Object _set_policy _overrides(

in PolicyList policies,

in SetOverrideType set_add);

h

Lisp Mapping V1.0 May 2000

3.12.1 Examples

Suppose the variable x is bound to an instance of class CORBA:Object. Then the follow-
ing are legal invocationg: is_equivalent x x) (_hash x 8777777)

3.12.2 Principal

3.13 DynAny

ThePrincipal interface is deprecated and is not mapped.

TheDynAny data type is mapped to a class namgdamicAny:DynAny (equivalently,

the class name@MG.ORG/DynamicAny:DynAny). TheDynAnyFactory interface is
mapped to a class namBgnamicAny:DynAnyFactory. The definitions to these inter-

faces is given in IDL and follows the standard IDL mapping, except that the CORBA spec-
ification defines additional locality restrictions on their use. The usage of these classes
thus follows the standard mapping.

3.13.1 Example

Suppose X is bound to an instancé®ghamicAny:DynAny. The string'foo" may be
inserted into either via:

(insert_string x "foo")
or
(insert_any x "foo")

If y is bound to an instance of the cl&mamicAny:DynAnyFactory, then aDynami-
cAny may be created via:

(create_dyn_any x "foo")

3.14 The IDL Compiler

The functionCORBA:IDL when applied to a single argument that is a pathname designa-
tor defines within the Lisp world in which it is invoked all data types, packages, classes,
functions, and constants defined by the denoted IDL file. This may entail redefining
classes or types.

Note —Pathname designator is defined in the ANS Specification (p. 26-35). Loosely
speaking, it is a string that names a file, a "pathname object" that represents the name
of that file, or a stream associated with that file.

Lisp Mapping V1.0 DynAny May 2000 3-13

3-14

If the Lisp mapping requires that package nafée created, and there is already a pack-
ageQ with P as one of its names or nicknames in the current Lisp world, then the package
Q is used everywhere the package nafésirequired. Previously existing symbols

interned inQ, or other attributes d such as the packages it uses, are not affected. How-
ever, if a symbol is interned in, but not exported®yand if the mapping requires this
symbol be external, its visibility is appropriately modified as a result cE@RBA:IDL

mapping.
The value returned is an object of typ©ORBA:Repository and represents an Interface

Repository representing the IDL file given as input. The returned object shall contain rep-
resentation of the datatypes defined by the IDL file or shatibe

3.14.1 Example

Suppose the file namétbo.idl" contains:

module example {
struct y {long long zz;};
const long long ¢ = 1000000000000000;

I3

then the invocations

(CORBA:IDL "foo.idI")
(setq ex (example:y :zz example:c))

will bind the variableexto an instance dEORBA:struct whose lonezz field has value
equal to1000000000000000

Lisp Mapping V1.0 May 2000

Server-Side 4

This chapter discusses how implementations create and register objects with the ORB
runtime.

Contents

This chapter contains the following sections.

Section Title Page
“Mapping of Native Types” 4-1
“Dynamic Implementation” 4-2
“PortableServer Functions” 4-3
“Implementation objects” 4-3
“Servant classes” 4-3
“Defining Methods” 4-4
“Examples” 4-5

4.1 Mapping of Native Types

Specifically, the native typBortableServer::Servantis mapped to the Lisp class nhamed
PortableServer:Servant The native typ®ortableServer::ServantLocator::Cookie is
mapped to the Lisp typ@ortableServer:ServantLocator/Cookie Note that the full

name of the PortableServer packag@G.ORG/PortableServer, so that the types
named here can also be specifie@&G.ORG/PortableServer:Servant,
OMG.ORG/PortableServer:ServantLocator/Cookie

The clasdortableServer:Servantsupports several operations designed for convenient

Lisp Mapping V1.0 May 2000 4-1

interaction with the POA.

Application of the function named lop:_thisto an instance of clas®orta-
bleServer:Servantbehaves as follows:

® Within the context of a request invocation on the target object represented by the
servant, it allows the servant to obtain the object reference for the target CORBA
object it is incarnating for that request.

® OQutside the context of a request invocation on the target object represented by the
servant, it allows a servant to be implicitly activated if its POA allows implicit
activation. This requires the activating POA to have been created with the
IMPLICIT_ACTIVATION policy. If the POA was not created with the
IMPLICIT_ACTIVATION policy, thePortableServer::WrongPolicy exception is
thrown. The POA used for implicit activation is gotten by invoking
op:_default_POA on the servant.

® Qutside the context of a request invocation on the target object represented by the
servant, it will return the object reference for a servant that has already been
activated, as long as the servant is not incarnating multiple CORBA objects. This
requires the POA with which the servant was activated to have been created with the
UNIQUE_ID andRETAIN policies. If the POA was created with the
MULTIPLE_ID or NON_RETAIN policies, thePortableServer::WrongPolicy
exception is signalled. the POA is generated by invokipg default_POA on the
servant.

4.2 Dynamic Implementation

DSI servants shall inherit from the cldsrtableServer:Dynamicimplementation,
which in turn inherits froniPortableServer:Servant This class is defined via the follow-
ing pseudo IDL:

module PortableServer{

pseudo interface Dynamiclmplementation(servant) {

void invoke (in ServerRequest request);

Repositoryld primary_interface(in Objectld oid, in POA poa);
h

The clas$ortableServer:Dynamicimplementationinherits theop:_this method from
the PortableServer:servantclass.

The op:invoke method, whose signature is specified in pseudo IDL above, receives
requests issued to any CORBA object incarnated by the DSI servant and performs the pro-:
cessing necessary to execute the request.

Theop:primary_interface method receives a@bjectld value and &OA as input
parameters and returns a vaRepositoryld representing the most derived interface for
that oid.

Lisp Mapping V1.0 May 2000

4.3 PortableServer Functions

Convenience functions are provided for conversio®bjectlds to and from strings:
(PortableServer:0id-to-string oid) (PortableServer:string-to-oid string)

These functions take respectively@bjectID and a string and return the corresponding
string orObjectID.

4.4 |Implementation objects

An implementation of an IDL interfadecorresponding to a Lisp class nanieshall
inherit, directly or indirectly, from the classes nanhethdPortableServer:Servant

4.5 Servantclasses

An interface corresponding to a class named by a Lisp syswhithh packagep and name
n may be implemented by extending the class named by the symbol whose pagkage is
and whose name is the concatenation tuf the string *“SERVANT".

For eachattribute in theinterface, the associated servant class has a slot whose name is
the name of the attribute and whose home package is the Feature package.

If the interface has no base interfaces, then the associated skeleton class has as direct
superclasses the class corresponding to the given interface and the claspavéaned
bleServer:servant .

Otherwise, if the interface has base interfaces nam@&J C, etc., then its associated ser-
vant class has as direct superclasses the class corresponding to the given interface and th
servant classes correspondingptdB, C, etc.

4.5.1 Example

Consider the following IDL:

module example{
interface foo {};

interface bar {};

interface fum : foo,bar {};}

The corresponding Lisp hierarchy could look like this:

(defclass example:foo-servant(example:foo portableserver:servant)(..))
(defclass example:bar-servant(example:bar portableserver:servant)(..))
(defclass example:fum-servant (example:fum example:foo-servant example:bar-servant)(...))

The class diagram of the IDL is pictured in the section Mapping for Interface (see
Section 2.8, “Mapping for Interface,” on page 2-10). The class diagram for the generated
Lisp is pictured below.

Lisp Mapping V1.0 PortableServer Functions May 2000 4-3

%7 PortabhleServer:Dynamiclmplementation

corba:ohject

PortableServer:servant

' &

example:foo example:bar [] _‘

N |

example:fooservant| lexample:barservant

example:fum

ZE example:fum-servant

Figure 4-1 Lisp hierarchy corresponding to example 4.6.1

4.6 Defining Methods

The only portable way to implement an operation on a servant class is by use of the
corba:define-methodmacro.

The syntax o€orba:define-methodis intended to follow as closely as possibly the syntax
of the Lispdefmethod macro.

4.6.1 Syntax of corba:define-method

corba:define-method function-name {method-qualifier}* corba-specialized-lambda-list form*

function-name::= {operation-name | (setf operation-name)}
operation-name:: symbol

method-qualifier::={:before | :after | :around}

corba-specialized-lambda-list ::= setf-lambda-list | normal-lambda-list
setf-lambda-list ::= (argument-specifier receiver-specifier)
normal-lambda-list ::= (receiver-specifier {parameter-specifer}* context-list)
context-list ::= {} | {&key {context-identifier}+}

context-identifier ::= symbol

4-4 Lisp Mapping V1.0 May 2000

receiver-specifer ::= (receiver-name receiver-class)
receiver-name ::= symbol

receiver-class ::= symbol

parameter-specifier ::= symbol

4.6.2 Description
This corba:define-methodmacro is used to implement an operation on an interface.

operation-nameis a symbol whose name is the hame either of an operation or an attribute
declared in an IDL interface implemented by the class named by the sygubivier-
class

The number oparameter-specifiess listed in thenormal-lambda-list shall equal the
combined number dh andinout parameters declared in the signature of the operation
denoted by théunction-name, or 0 if the operation is an attribute. If tfienction-name

is a list whosesar is setf, the correspondingperation-nameshall name an attribute that
is notreadonly.

If function-name denotes an operation, then the effeataba:define-methodis to

inform the ORB that requests for the operation on instances of theetasger-class
shall return the value or values returned by the body forms afefiree-methodmacro,
executed in a new lexical environment in which epafameter-specifieris bound to the
actual parameters and in which eaontext-identifier is bound to the value of the corre-
spondingcontextvariable.

The operation oforba:define-methodin the case in whicfunction-name names an
attribute is analogous.

The behavior of auxiliary specifiers and of dispatch is the same as their corresponding
action undedefmethod

Note that the syntax @brba:define-methodis a strict subset of that défmethod every
legalcorba:define-methodinvocation is also a legdlefmethodinvocation. The main
difference between them is thadrba:define-methodonly allows specialization on the
first argument.

It is not required that the invocationsadrba:define-methodthat do not conform to the
above syntax signal an error, although an implementation may so signal.

4.7 Examples

4.7.1 Example: A Named Grid

The first example shows how one might encapsulate a “named-grid,” which is a grid of
strings.

4.7.1.1 IDL

This is the IDL of the interface to a named grid of strings.

Lisp Mapping V1.0 Examples May 2000 4-5

4-6

module example{

interface named_grid{

readonly attribute string name;

string get_value (in unsigned short row,
in unsigned short column);

void set_value (in unsigned short row,
in unsigned short column,

in string value);

}

4.7.1.2 Generated Lisp code

The IDL compiler might generate a class corresponding textmple::named_grid
interface using code something like this:

(defpackage :example)
(defclass example:named_grid(corba:object)())

4.7.1.3 Servantclass

In order to implement the IDL interface, the user would extend the eXass-
ple:named_grid-servant.

;;Sample implementation of named_grid
(defclass grid-implementation (example:named_grid-servant)

(
(grid :initarg :grid
;initform (make-array ‘(2 3) :initial-element “Init")))

4.7.1.4 Implementation of the IDL operations

Thecorba:define-methodmacro is used to define the methods that implement each of the
operations defined in the IDL interface. Note that the reader method and initarg corre-
spond to thattribute name that was already defined by seevant.

These implementations do not perform any argument or range checking, which a produc-
tion system would, of course, perform.

The implementation is free to define other methods on the class, inchuititgbject
methods anduxiliary methods foiinitialize-instance.

Lisp Mapping V1.0 May 2000

(corba:define-method get_value ((the-grid grid-implementation)
row

column)

(aref (slot-value the-grid ‘grid) row column))

(corba:define-method set_value ((the-grid grid-implementation)
row

column

value))

(setf (aref the-grid row column) value))

4.7.1.5 Usage example

Once the implementation class is defined, it can be instantiated and its instances treated a:
a normal CLOS obiject. In particular, such instances can be passed to remote ORB servers
which expect an object implementing the IDamed_grid interface. The invocation of

the methods corresponding to IBberations does not depend on whether the object is an
instance of the servant class or is simply a proxy for another object (perhaps implemented
in another language).

This usage example does not discuss registration of the object with the ORB.
; create a named grid

(setq grid (make-instance ‘example:grid-implementation :name
“Example of a grid”)

(name grid)
> “Example of a grid”

(set_value grid 0 1 “Hello”)
> : No values returned

(get_value grid 0 1)
> “Hello”

Lisp Mapping V1.0 Examples May 2000 4-7

4-8

Lisp Mapping V1.0

May 2000

Detailed Design Choices A

This chapter is a detailed description of the choices involved in selecting the mapping
for each particular IDL element.

The design decisions in this chapter are subordinate to the general design principles
discussed in Chapter 3.

The contents of this chapter are not normative and are not referred to by any normative
section of this document.

A.1 Mapping for Feature

Several alternative mappings for the Feature meta-class were possible.

A.1.1 MM Naming Features

The question of the name to assign to the Lisp correspondent for an instance of the
Feature metaclass proved to be the most difficult and controversial of the design
decisions.

One obvious alternative would be to name Feature in the same way that Classifiers are
named.

But Feature is explicitly not a subclass of Classifier, and for good reason: a Feature is
only used in conjunction (indeed, in juxtaposition) with the Classifier that is its owner.
Thus, explicit disambiguation of the Feature owner is not necessary in the current
CORBA/UML object model. When and if this metamodel is extended to require such
disambiguation, it would be entirely reasonable to provide addition functions for
selecting the Feature from its name and the explicit name of its owner Classifier.
Indeed, we have chosen to support this paradigm in one the DIl invocation model.

In this way, our naming convention follows the Java mapping paradigm, rather than the
C mapping paradigm.

Lisp Mapping V1.0 May 2000 A-1

Given that theoretical considerations perhaps could not entirely determine whether to
require explicit naming of the Classifier of which a Feature is a feature, it is tempting
to rely upon the wide body of praxis amongst two commercial ORB vendors, three
ORBs, and many commercial users of these ORBs in disparate industries which has
seemed to us to indicate a strong preference, albeit informally reported, among users
for the Java-style Feature mapping. Nevertheless, this fact in itself is not persuasive
due to the manifest influence of self-selection bias: those users who prefer the C-style
Feature mapping may either have eschewed use of the commercial ORBs supporting
the Java-style Feature mapping entirely, or they may have simply declined to report
their opinions of the mapping. In any case, an ORB implementation is not proscribed
from supporting C-style naming for Feature by this specification.

A.1.2 Feature Package

In any case, our decision not to require explicit naming of the Classifier that owns a
Feature in using the Feature forces us to determine a particular package in which the
symbol corresponding to the name of such a Feature shall reside. Long names are
difficult to use; short names may conflict with existing usages. We chose a long hame
for disambiguation and a short nickname.

The minimal usage would have been to map to KEYWORD, as symbols in this
package are simpler to use in certain ways than symbols in other packages when their
symbol-value need not be set. Again, this usage could conflict with existing user code;
because of CORBA's common usage scenario of integration of legacy systems, we
wanted to avoid any such legacy problems. Keywords are also not acceptable as slot
names.

We also considered for some time various sophisticated tricks with the Lisp package
import and package using functions. Our experience in practice is that the small space
savings are rarely if ever worth the non-transparency of the resulting code.

We also considered mapping to keyword package together with prefixing the name of

the Feature with a character such as "." or "/".

A.1.3 BehavioralFeature

The mapping of invocation @dehavioralFeature might seem to require overhead at
invocation time due to the mismatch in lambda-lists between the declared IDL
operation and the actual generic function named byBkhatvioralFeature .

Fortunately, compiler macro can solve this problem, if it does prove to be a problem,
without affecting portability.

A.1.4 Feature visibility

The question of the mapping f8tructuralFeature visibility arose only in valuetype
mapping. We initially considered inhibiting accessor generation for private
StructuralFeatures . We rejected this however and map visibility in the same way as
we map thdsAbstract attribute ofGeneralizableElement : as a restriction on
portable user code.

Lisp Mapping V1.0 May 2000

A.2 Names

There are several differences between the IDL and the Lisp nhamespaces.

A.2.1 Capitalization

IDL identifiers are case-sensitive, but two identifiers differing only in case are not
allowed to occupy the same namespace.

Although Lisp symbols are also case-sensitive, in practise it is often inconvenient to
notate in a Lisp program symbols whose names contain lower-case alphabetic
characters, since the Lisp reader by default converts lower-case characters to upper-
case characters in symbol names.

Therefore, we have chosen to convert implicitly all IDL identifiers to upper-case.

However, we follow the customary usage of X3J13 in notating symbols using mixed-
case—typically lower-case—characters.

A.2.2 Nesting

The IDL namespace is deeply nested, although there is only a single “root” namespace.

There are many disjointed Lisp hamespaces, each of which is essentially bilevel. We
chose to partition the IDL nhamespaces into a module portion and a nhon-module
portion.

A.2.3 Character set

Lisp symbols typically have nhames comprising 8-bit characters. However, certain
characters, such as the space character, are difficult to work with in practice since they
shall be escaped for the default Lisp reader.

The situation for IDL identifier is not as clear for the following reasons:

International characters

The CORBA 2.1 specification, as have previous CORBA specs, explicitly allows a
number of ISO-Latin characters that are not standard ASCII alphabetic characters, such
as R, AE, and E.

However, no other mapping of which we are aware has provision for mapping symbols
containing such characters. In order to remain compatible with existing ORBs, we
chose to allow only standard alphanumeric characters and the underscore character in
IDL identifiers.

CORBA 2.3 eliminates this issue.

Lisp Mapping V1.0 Names May 2000 A-3

Other special characters

Lisp allows punctuation characters such as “/”, “-” and “.” to be part of the character
name, while IDL does not. We exploit this fact in a number of instances to avoid the
possibility of name clashes.

Keywords

Lisp does not have reserved words in the usual sense (although the bindings of certain
symbols may not be changed). Therefore, we did not require rules for avoiding clashes
with reserved keywords. On the other hand, we did not consider here the issue of
generated Lisp package names conflicting with user or system package names. We
expect that options may be provided to the compiler to avoid this problem.

A.2.4 Alternative mappings

It would have been possible to choose a hame mapping that produced names more
familiar to Lisp users. For example, hyphens could have been inserted at case
transitions, or underscores could have been converted to hyphens.

A.2.5 Prefixes

We provided gackage_prefixpragma in order to avoid clashes between IDL module
names and generated Lisp package names.

An alternative is to usksp_package_prefixin order not to conflict with future usages
of this term by other languages. On the other hand, perhaps this usage will become
standard and desirable.

A.3 Mapping of basic types

A-4

The mapping for most of the basic types is fairly straightforward, although character-
set issues are discussed above.

Each basic type is implicitly viewed as a classifier in the CORBA package, and is thus
mapped to a Lisp type specifier in the CORBA package, following the standard
mapping principles, regardless of whether an equivalent Lisp type already exists.

A.3.1 boolean

We considered mapping this type to the Lisp values definegehgralized boolean
which is easier to use in certain cases, or mappifgtbean which may be simpler.
The original implementation of this type was in facbtmlean but it became clear
that in practice the mapping treneralized boolearwas simpler to use because so
many standard Common Lisp predicates return generalized boolean.

Lisp Mapping V1.0 May 2000

A.3.2 float and double

In practice Lisp vendors us&EE format to represent floating point numbers, but
because this representation is not required by the ANSI standard, we chose our
mapping to be independent of this.

A.3.3 long double

ANSI Lisp does not require support flang double and some Lisp vendors also do
not support it on some platforms. Howewuettional can always be used as a stopgap,
and our mapping is thus implementable on any Lisp.

A.4 Mapping for struct

The mapping fostruct we chose is consistent with the standard mapping for
Classifier. Each member of the struct is viewed &StaucturalFeature of the same
Name with the standard naming convention and accessors for these.

An alternative mapping would map an IBtruct directly into astructure-object, an
object created by the macdefstruct. Another reasonable mapping would have been
to map astruct into a class whose slot accessors obeyed the naming rulesfétruct
accessors.

However, we have chosen our mapping so ttsitiecture-classimplementation would
not be precluded; we do not insist tlcarba:struct be a subclass aftandard-class
since for some compilers it could be the case that implementiogba:struct as a
structure-object would allow a performance improvement.

A.5 Mapping for exception

From the point of view of UML, an exception class is viewed as a Classifier whose
members correspond ftructuralFeatures of the same name.

User exception classes and system exception classes are considered to inherit (as
Classifier elements) from tHgserException andSystemException Class elements
in the CORBA package.

The mapping of exception then follows directly from our standard mapping for
Classifier.

The only question is the superclasse€6fRBA:Exception, CORBA:UserException
and CORBA:SystemExceptionnot determined by this mapping. Some amount of
experience was needed to choose the current mapping.

A.5.1 condition hierarchy

Certainly corba:exception the base class that arises from the UML mapping, must
inherit from condition.

Lisp Mapping V1.0 Mapping for struct May 2000 A-5

However, it is not clear from which of the standard Lésmdition classes the
corba:exceptionclass would most appropriately derive directly.

We considered these options as candidates for the direct superclass of
corba:exception

® condition, the base class for the Ligpndition system
® error, the base class for errors.
® serious-condition

We quickly rejectedsimple-error, simple-condition, andwarning as candidates.

The most familiar condition to signal for Lisp programmers would probablyriue,
but the specification does not support this usage.

In particular, the ANSI spec [p. 9-11] states that “The tgper consists of all

conditions that represent errors” where an “error” as used in the last word refers to “a
situation in which the semantics of a program are not specified, and in which the
consequences are undefined.” We felt that this was too strong a usage for the certain
cases of exceptions that are raised.

On the other hand, serious-conditionis one which is “serious enough to require
interactive intervention if not handled [X3J13 p. 9-10].” This seems like a more
appropriate match, and it is the one we initially chose.

Experience with the way CORB8ystemexceptions are used in practice led us to the
current mapping, in which system exceptions are mapped to subclagzesrofThis
allows macros likegnore-error to be used more easily with CORBA code. However,
we retain the "old" mapping farserexceptions, as in practice some of these are
clearly outside the specification ferror.

It would certainly be a reasonable mapping forb@:exceptionto inherit directly
from condition. However, we think that exceptions should be signaled using the Lisp
error function and not theignal function.

The question of the direct superclasscofba:exceptionaffects the behavior of
condition handlers in whose scope such a condition is signalled, hence the importance
of specifying carefully this class.

There is a theoretical backwards incompatibility problem with existing CORBA 2.2
ORBs whose handlers rely @ORBA:SystemExceptionnot inheriting fromerror.

We would be extremely surprised if this problem affects any real code; and when it
does, the problem is trivial to find and to correct.

A.5.2 Naming exception classes

We chose to name the classes corresponding to system arnekosptiors
corba:systemexceptiorand corba:userexceptionrespectively. This naming
convention is consistent with the mapping of Java and of C++,

Lisp Mapping V1.0 May 2000

A

However, the IDL for theenum types corresponding texceptionused in the IDL for
the GIOP uses an underscore to separate the wamitia_exceptionand
user_exception and sacorba:system_exceptiorandcorba:user_exceptionwould be
an appropriate alternative mappings.

A.6 Mapping for enum

An enum type is considered as a Classifier; the mapping of the name follows the usual
rule for Classier mapping.

A Lisp symbol in thekeyword package usually fill the role @fnum in C-like

languages. This mapping has the disadvantage, however, that such values are not self:
typing in the sense that they do not encode the name of the enum of which they are a
member.

We could have chosen a self-typing mapping as well—languages like Java have two
mappings forenum, for example—but we chose not to do so.

A.7 Mapping for union

A union is viewed as &lassifier with StructuralFeatures corresponding to each
branch. Obviously since only one such branch is needed, only one slot need be
physically represented. Otherwise our mapping follows our custo@lassifier

mapping.

An alternative mapping would map thaion to a base class and each of the branches
to concrete subclasses.

We eventually decided to follow closely the Java union mapping, again to shorten the
learning curve.

A simpler alternative would have been to mapnéon to aconswhosecar holds the
discriminator and whosedr holds the value.

We considered the issue of automatic coercion of values to a union. We will consider
this at a later version; there is not a pressing need for this convenience feature, and it
has some semantic subtleties in the cases of ambiguous coercions.

A.8 Mapping for module

The mapping for module follows the standard UML mapping for the Classifier
Package. All elements owned by the Package are named by symbols whose name is the
name of that Package.

The IDL module is a name-scoping mechanism in IDL whose corresponding Lisp
equivalent is the package. Some separators need to be used between namespace
identifiers, since the Lisp package system is not nested.

Lisp Mapping V1.0 Mapping for enum May 2000 A-7

We chose not to rely on automatic importing of symbolspackagecorresponding to
an outermodule into thepackagecorresponding to the innenodule, as we felt the
potential for confusion outweighed the gain in concision.

The “/” separator was chosen instead of the “.” separator because that is the separator
used by IDL as a scoping separator in repository IDs. However, the “.” is more familiar
in this context, since it is used as a scoping separator in the Java mapping, and we are

considering modifying the mapping to use “.” as the scoping separator character.

A.9 Mapping for array

An IDL array is mapped to a Lisprray. It would be reasonable to specify formally
the declaredelement-typeof the mapped Lisp array, but for simplicity we chose not
to in this document.

There is a potential ambiguity in dealing with nested arrays. Consider the following
IDL definitions

// IDL

typedef short a [2];
typedef a b[3];
typedef short ¢[2][3];

In the mapping¢ would be mapped to a 2-dimensiomatay,but b would be mapped
to a one-dimensionalrray of arrays. These data structures are disjointed in Lisp and
are not accessed using the same syntax.

The problem is that the definition éfrrayDef in the interface repository only allows
one-dimensional arrays (although the element type can be array). Thus, it might be
necessary to map b into a Lisp two-dimensional array of integers as well, so as to
interoperate unambiguously with other interface repositories.

Because there are known problems with the treatment of interface repositories in
CORBA, we chose not to consider the impact of this problem at this time.

A.10 Mapping for sequence

A-8

We map IDLsequenceto the Lisp typesequence

There are several possible alternative mappings.

A.10.1 sequence-to-list

The simplest mapping to use and to explain is probably the mapping that maps
sequenceto list. Unfortunately, such a mapping has substantial performance overhead
for cases where the element types are small, such as in the ubiquitous
sequence<octet>More important, thdist data type simply fails to capture gracefully
the intended use afequencen certain applications.

Lisp Mapping V1.0 May 2000

A.10.2 sequence-to-vector

Another natural mapping is faequenceto go tovector. Although this is an
appropriate mapping in cases wheregbquenceslements are small and the sequence
size does not change often, it is less appropriate to use wheadgtences intended

to be modified in size or constructed dynamically.

Of course it would be possible in such cases to segenceo adjustablearray with

fill pointers. These are a subtypearfay which permit run-time size modification.
Although such arrays are useful in certain applications, they are nevertheless less
flexible and are more difficult to use than tie datatype for many purposes.

A.10.3 Hybrids

Some proposed mappings have generally magpgdenceo list, but have mapped to
array in certain special cases, (e.g., when the elements are small).

A.10.4 Advantages of our proposal

® QOur proposal is the simplest to use of all the proposals in the common case where
the user is writing a client that passes a parameter for which the corresponding
parameter was declared aseqjuence Indeed, the client can simply ulsts or
arrays in the application code, whichever is more convenient.

® Our proposal is more efficient than thequenceto-list in cases where the element
types are small or whereector is the better data type.

® Our proposal is simpler and more flexible than the hybrid proposal, since there is no
artificial demarcation that the user shall remember between the mapping
conventions.

® Our mapping is simpler and crisper in certain ways, according to some users.

A.10.5 Disadvantages of our proposal

® Qur proposal is more difficult to use than the other possibilities in the case where a
sequenceds a return parameter of aperation, since the client does not know the
type of thesequence

® Qur proposal is slightly more complicated for the implementor of a method, since
the method body shall be prepared to expect an arbi#earyence(or a syntax in
the method definition shall allow this conversion to be done automatically).

® Qur proposal can lead to problems in verifying the correctness of code that does not
correctly handle sequences passed to it; code might fail to work only on certain
types of sequences.

® Qur proposal imposes a small run-time overhead associated with type-checking of
the passed value.

Lisp Mapping V1.0 Mapping for sequence May 2000 A-9

A.10.6 Conclusion

It is certainly tempting to fix the mapping of sequence either to vector or to list.
However, we believe that the availability of both vector and list data-types in Lisp is
quite useful; fixing on either one would constrain functions for which the other would
be better suited.

A.11 Mapping for any

In the case o&ny, there are several issues to consider: convenience, generality, and
accessors.

The any mapping was chosen so that Lisp values can be passed back and forth from
operations expecting an any without undue manual coercions, particularly in the
common cases where a primitive type is passed.

The special handling of string designators was chosen to avoid ambiguity in passing
enum values.

The coercions were chosen so that the typecode would denote the “smallest”
containing type in some sense. However, for the sake of implementation simplicity, a
list can be passed asquence<any>ather tharsequence<type>where type is some
smaller superset of the types of the contents of the list.

This semantics was chosen particularly to facilitate passing nested lists of primitives.

The integral typecode chosen in the case of integer operands is the smallest (from the
CDR point of view) that it can hold. This is clearly consistent with well-known
heuristics in Bayesian classification theory such as Minimum Description Length
encoding.

A.12 Mapping for typedef

A-10

A typedef is considered a Classifier with no Features. The mapping follows the
standard Classifier mapping rules.

It seems clear that tgpedef should map to a Lisp type that contains at least all the
values that could be in the range of the mapping of the original IDL type aliased by the
giventypedef. However, whether these sets should coincide—whether a value not in
the range mapping should not be in the appropriate type—is problematic for
constructed types: how far should the type specifier peer into the object?

These cases arise patrticularly in handling the mappingrfay, sequencestruct,
andunion. It is particularly problematic in the latter two cases since the type specifier
is defined automatically from the name of the class definingtihet or union.

In order to simplify the exposition, we do not mandate special type-checking beyond
checking at the top-level.

Lisp Mapping V1.0 May 2000

A.13 Mapping for interface

Our naming followed the standard naming conventions: an interface is viewed as a
Classifier; attributes correspond &tructuralFeatures , operation to
BehavioralFeature .

The interface mapping comprises several parts: Mapping from IDL for interface Class
in UML model of IDL into mapped model (i.e., generation of auxiliary classes);
Mapping of UML for interface into Lisp; implementation on server-side.

Mapping of the UML into Lisp is straightforward. Server-side mapping issues are
discussed below.

A.13.1 Generation of auxiliary classes

We followed the Java mapping on generation of stub and skeleton classes
corresponding to a given interface. We used as suffixes for these generated classes -
proxy and -servant. It would be equally reasonable to use -stub and -skeleton; in any
case this does not affect the semantics and we chose to be consistent with the large
base of vendor code using the current prefixes.

Our mapping here avoided the aspect of the Java/C++ mappings in which certain user
classes or IDL interfaces can nameclash with generated classes.

A.14 Mapping of valuetype

Valuetype is viewed in the standard way as a Classifier. Valuetype members are
mapped tdStructuralFeatures ; operations are mapped @peration .

Mapping valuetype must be done with great care because of interactions with POA,
abstract, abstract interface, factory, GIOP, RMI Repository IDs, and custom marshal.
Because the design goal of the Lisp mapping was to make the mapping as easy-to-use
as possible, we require a lot of real-world use-cases to design the right mapping and
make the right tradeoffs.

Therefore, our design decision was simply to retain consistency with our standard
mapping principles and to defer to the extent consistent with minimal required
portability the ease-of-use features to tool vendors. Although this design decision could
theoretically have the consequence of engendering a proliferation of incompatible ease-
of-use features (mostly macros), we felt the danger of this was outweighed in most
cases by the danger of overspecifying features that turned out not to be widely used in
practice but whose inclusion complicated exposition of the standard.

A.14.1 supports

The <<supports>> association from a Valuetype to its supported interfaces could have
been implemented without inheritance, which could be more efficient in certain cases.
We felt that mapping the <<supports>> association to inheritance was simpler.

Lisp Mapping V1.0 Mapping for interface May 2000 A-11

Note that this diverges from the C++ 2.3 design decision which does natuppprts

into inheritance. The Java 2.3 mapping does map <<supports>> to inheritance, but onto
the specific Operations interface associated with an interface, which for the Lisp
mapping is implicit in the interface. We felt our mapping was possibly simpler to
explain and we felt that at this time there was insufficient usage data to determine
whether the concerns in the C++ supports mapping would in fact obtain in Lisp real-
world usage scenarios, with its inherently looser typing.

A.14.2 unmarshalling and custom unmarshalling

We followed the C++ unmarshalling semantics, rather than the Java ones. The main
difference here is that the C++ does not explicitly address unmarshalling of RMI
repository ID’s.

For custom classes we do choose to have generated classes inherit from
CustomMarshal .

A.15 abstract valuetype

A-12

Abstract is not supported directly by Lisp, so we essentially only support this as a
constraint on user code.

A.15.1 abstract interface

An abstract interface is mapped according to the normal Classifier mapping.

The key question in abstract interface was simply whether to inherit from Object. Our
original mapping left this up to tool vendors, but for specificity we now require it.
Because of our of our mapping for <<supports>>, it is the case that any usage of
abstract interface must inherit from Object (indirectly).

A.15.2 Lisp-to-IDL

It is natural to assess the impact of our mapping on future Lisp-to-IDL mappings. We
determined not to assess this question in the current mapping in order to simplify the
job of creating our OBV mapping. As additional experience is gained this question can
be readdressed.

A.15.3 Value box

We chose our mapping based on the fact that the non-primitives are passed by
reference anyway in Lisp and can be checked for eg-ness by the compiler. Arguably we
could have done the same for primitive types, but we decided it was simpler to use the
C++-style mapping for these boxes.

Lisp Mapping V1.0 May 2000

A.16 Compiler mapping

Languages which lack first-class access to their compiler typically standardize only the
run-time environment and leave the IDL compilation unstandardized. The IDL
compiler is usually implemented as a separate program whose interface is defined by
the ORB vendor.

We considered two compiler interfaces: the current one and an interface that decoupled
the parsing and the compilation. The parse interface would simply build an interface
repository from the source file; the compilation interface would compile from an
interface repository. However, we the current mapping is much simpler.

It would be desirable at some future time to allow URL's as pathname designators.
However, this is quite complex to describe (i.e., #include must be described, and the
exact space of accepted URLs must be described) so we decided not to do so.

A.17 Pseudo Interface Mapping

The main question in mapping the pseudo-interfaces was whether to use Lisp
conventions throughout or simply translate the pseudo-IDL in “brute-force” fashion.

We chose the latter approach for two reasons:
Our pseudo-interface mapping is quite straightforward.

Ouris_nil mapping was chosen to assure that pseudo-operations were not invoked on
nil, which could theoretically cause some future problems with fudpreyeneric
function implementation.

In the case of the DII, we added several convenience features so that users do not have
to specify the typecodes and return types of the calls.

Our original mapping followed the Java mapping, but we felt the ORB can get the
typecodes just as well as the user.

In practice, many non-Lisp ORBs do not suppanterface, so the exception signalled
when the ORB is unable to infer the typecodes in using the DIl is significant. We chose
a subclass o€ORBA::MARSHAL ; an alternative would have been a new top-level
CORBA system exception. However, since this invocation is local, we saw no need not
to inherit from the existing exceptions.

We considered invoke as a pseudo-operation @bject, and a top-level
corba:invoke.We also considered putting the target firstarba:funcall.

For simplicity we followed the familiar "_" prefix i@bject pseudo-operations.

Although more elegant solutions were certainly possible, they were deemed not
necessary in this case.

Lisp Mapping V1.0 Compiler mapping May 2000 A-13

A

A.18 Server side mapping

A-14

One of the most interesting issues here was whether to allocate slots automatically
based on interface attributes. On the positive side, doing so significantly simplifies
common usages and examples. On the negative side, it is unnecessary in certain case

We also considered a particular define-class macro, analogous to the define-method
macro.

Since specification of the metaclass of implementation classes is unnecessary in most
cases, we could simply follow the standard defclass syntax, replacing the metaclass
specifiers by method specifiers. Attribute specifiers are mapped using expected syntax.

An example might clarify. Consider

module ex {

interface foo {

string foo ();

long fum(in long arg);

bk

A user implementation of this class could be defined via:

(corba:define-method my-foo (ex:foo-servant)
((my-slot :accessor my-slot))

(method foo () ("hello from method foo"))
(method fum (arg) (+ (my-slot this) arg))

(method foo :before (format t "Calling method foo
now...~%")))

Note that "this" is bound to the target in execution of each method body.

A similar compatible syntax is used for attribute specifiers. We eventually rejected this
proposal for inclusion in this version of the mapping. In any case, it is easy for the user
to provide such a macro if desired.

Lisp Mapping V1.0 May 2000

Lisp Concepts B

This chapter presents a simplified overview of some key Lisp concepts used in this
mapping document. Since the ANS Lisp standard, on which this document is based is
approximately one thousand pages long, it seemed useful to limn some of the key
concepts.

Note —This appendix, of course, is non-normative, and in some tasesrsimplified
or inaccurate. This appendix is not intended to serve as a Lisp reference. The ANS
specification should be referred to for normative definitions.

B.1 Lisp evaluation

The life of a Lisp form typically comprises three phases:

1. read: A character representation of the form is read by the invocation of the Lisp
function read on that string. This returns some Lisp value.

2. eval: This Lisp value is then evaluated, producing zero or more Lisp value or values.
3. print: These values are printed

Of course, the actual work is done in the evaluation phase. In examples we typically
show the input and output of the forms to a simple Lisp listener that indeed simply
reads, evaluates, and prints. In these examples in this specification, we preface the
output of the listener with string "--->".

The evaluation of a form (a value) is simple enough. If the form is a list, the first
element should be a function or the name of the function; that function is applied to the
arguments that result when the remaining elements of the list are evaluated. Otherwise,
the form itself is returned.

Lisp Mapping V1.0 May 2000 B-1

B.1.1 Example

B.2 Lispvalues

(+2 3 (*1100000))
---> 100005

Here, the user has input the string "(+2 3 (*1100000))" to the listener, which has
printed 100005. The result of evaluating the list (* 1 100000) is 100000, and the result
of evaluating (+ 2 3 100000) is 100005.

This is often informally referred to as "The result of evaluating the form (+2 3
(*1100000))) is the number 100005", or "Applying the function named by the symbol
+ to the arguments 2, 5 and the result of applying the function * to the aguments 1 and
100000 is 100005.

A Lisp entity can be, among others, one of the followimgmber cons symbo)
object type class function

A numberis either an (arbitrary sizé)teger an arbitrary-sizeational, a floating point
number or a complexaumber

B.3 Cons

A consis basically a structure with two fields, tbar and thecdr, each of which can
hold any other Lisp object. A cons is notated by writing theharacter, the
representation for thear, the "" character, the representation for tdr, and the)’
character. If thedr is itself aconsthen the " and the parentheses that would
normally surround thatonsare elided. If theedr has the valuail then the ’
character is omitted and thedr is not printed.
A list is either aconsor nil.
Lisp has numerous built-in functions for manipulating lists. Some of the most
common:car returns thecar of alist, cdr returns thecdr, list constructs dist from its
argumentsappend splices togethelists, mapcar maps a function over légst, and so
on.

B.3.1 Example
(2 .3)
denotes theonswhosecar is 2 and whosecdr is 3.
(2 3 4)denotes thdist with three element, 3, and4; equivalently, it is theons
whosecar is 2 and whosecdr is theconswhosecar is 3 and whosecdr is thecons
whosecar is 4 and whoseedr is nil: (2 .(3 .(4 .nil))).

B-2 Lisp Mapping V1.0 May 2000

B.4 Arrays
B.5 Types
B.6 Symbols

Arrays are created wittnake-array and accessed with theef function.
(setq a (make-array 5)); creates a 5-element 1-dimensional array
(setf (aref a 3) "hello") ; Sets the third element afto the string'hello” .
(aref a 3); get the third element of the array

---> "hello"

Multidimensional arrays are created using calls (keke-array '(2 3)) for a 2 by 3
array and elements are accessed(aiaf a 1 2)for the element at indeid 2) (all
indices are 0-based).

A 1-dimensional array is calledwector.A string is avector of character.

Various arguments tmake-array can constrain the type of each element, change the
base of the indices, align the array with another array, or allow the array to be
extensible.

A typeis a set of objects. A type specifier is the name of the type. For exargder
names the type of all integers, while the (isteger 0 43)names the type of integers
from 0 to 43.

If p is a type specifier theftypep x p)is T if and only ifx is a member of the type
denoted byp.

The typegeneralized booleardenotes all Lisp values, in whictil signifies false and
non-nil valuesdenote truth. Many Lisp built-in predicates return generalized booleans.

A symbol has gackageand a name. The package is essentially a named collection of
symbols, and the name is a string. Packages hpeelkage-nameand any number of
nicknames; any of these are said to name the package. A symbol is notated via
<package>:<name>where<package>is a name of the package ansymbol>is the
name of the symbol. The package specifier is omitted if it is understood.

A symbol can be external or internal in a package. In the latter case, two colons, not
one, must be used in notating it. It is possible, although it can be complicated, to
specify in certain lexical contexts that a symbol can be accessed without its package
designator. All the symbols used in this mapping are external.

Symbols in the keyword package, also called keywords, are particularly convenient to
use because they always have themselves as values and they can be notated simply vi
strings like "foo" for the symbol namedfdo" in the keyword package. Keywords are
typically used to specify optional named parameters to functions.

Lisp Mapping V1.0 Arrays May 2000 B-3

B.7 Functions

B.8 Example

B-4

A symbol has a value (which can be any object) and a function value. It can also name
a type or a class; these namespaces are disjoint.

When a symbol is evaluated, its value is returned. The value of a symbol is set using
the setg macro.

(setq a -1)

-—-->-1

a

-—-->-1

(defuna (xy) (+xY))
a

-1

(a31)

-—->4

A function is applied to its arguments:
(+2 3 4)
-->9

Here+ is not a function. Rathet; is shorthand for the symbot&mmon-lisp:+'
whose function-value is the addition function.

The actual addition function can be obtained from its name via:
(function '+)

A shorthand for this is

#'+

Functions can be defined by the defun macro.

(defun my-splice (a b)
(cons a b))
(my-splice 2 3)
(2.93)
(my-splice "foo
("foo" x y z)

(xy2)

The defun macro takes certain standard Lisp syntactic markers to specify the form of
the argument list: whether keywords are used and if so which ones and the default
value of their corresponding arguments; whether optional arguments are used; whether
an arbitrary number of arguments may be passed.

(defun keyword-example (x &key y z (foo "hello")))

Lisp Mapping V1.0 May 2000

B.9 Classes

(listx y z foo))
(keyword-example 3)
—-> (3 nil nil "hello”)

(keyword-example 1 :y 6 :z ’(1 1) :foo "goodbye")
---> (1 6 (1 1) "goodbye™)
(keyword-example 1 :z (1 1) :foo "goodbye" :y 6)
---> (1 6 (1 1) "goodbye")

Functions are first class objects. They can be explicitly applied to lists of arguments in
various ways. Functions may be redefined. Functions may be, and usually are,
compiled.

A classobject controls the behavior of its instances. Tetaclassof an instance is

the class of its class. Lisp defines various built-in meta-classes, but most user classes
are instances of the standard metaclass standard-class. Classes multiply inherit and
have slots that hold state.

(defclass furniture ()

(price :initform O :accessor get-price :initarg :price)
(id))

(defclass wooden ()

(kind :initform :0ak :accessor get-kind :initarg :kind))
(defclass wooden-table (furniture wooden)

(legs :accessor get-legs :initarg :legs))

This defines three classes, a base-diagsture which inherits fromstandard-object,
a classvoodenthat has a single slot holding the typenafod, and a subclassooden-
table that inherits fromfurniture andwooden

An oak table with 3 legs and costing 10 dollars can be created via
(make-instance 'wooden-table :price "10 dollars" :kind :0ak :legs 3)

The class-offunction returns thelassof its argument. Thelassof a value can be
changed by thehange-clasgunction.

The definition of a class can be changed. The slots in its instances have the natural
default behavior when the new class has a different set of slots, but the behavior of an
instance whose class has changed definition can be modifed by specializing the generic
function update-instance- for-redefined-class

Similarly, if the class of an instance is changed, its behavior can be customized by
using the functiorupdate-instance-for-different-class"

Lisp Mapping V1.0 Classes May 2000 B-5

B

B.10 Methods

Methods are similar to functions except that they may dispatch on zero or more of their
parameters. Methods belong to a generic function, which determines, when it is
applied to arguments, the correct method to call.

For example, here is a method to print an invoice for a wooden table:
(defmethod print-invoice ((this wooden-table) &key note)
(print "Congratulations on purchasing this beautiful wooden table")

(print the price is: (get-price this))
(if note (print note)))

Now if x is an instance of a wooden table, an invoice is printed via
(print-invoice x)
or

(print-invoice x :note "Net due in 90 days")

B.10.1 Auxiliary methods

B.11 Macros

B-6

A method may have associatadxiliary methods. Common types of auxiliary

methods ardéefore methods, which are always executed before the primary method is
run; after methods, which are evaluated after the method is runaenchd methods,
which conditionally control the behavior of the primary behavior (an around method
can call its associated primary method by usingctilenext-method function.

For example, we can define anound method onprint-invoice via:

(defmethod print-invoice :around ((this wooden-table) &key note)
(if

(equal note "Reserved")

(print "Warning: invoice should not be printed")
(call-next-method)))

If the passed imote keyword is the stringReserved", then a warning is printed and
the invoice is not printed. Otherwise, the primary method is invoked as usual.

Around methods are common in distributed systems to obtain the functionality of
smart proxies.

There are three types of macros in Lisp: reader macros, macros, and compiler macros.

A reader macro is used to lexically rewrite code before it has left the reader. For
example, reader macros are used to give some characters special significance.

Lisp Mapping V1.0 May 2000

B

B.12 Compilation

B.13 Conditions

Normal macros transform forms before they are evaluated. They can perform
arbitrarily complex manipulations on forms.

Compiler macros are only evaluated when a form is compiled. They are most often
used for optimization reasons.

Macros are commonly used in Lisp programs to tailor the application language to the
domain. For examplesorba:define-methodis a (very simple) macro.

In examples Lisp forms are usually interpreted, but in real life they are normally
compiled. Typically this produces an intermediate form, and optionally a file, that can
be loaded and executed more quickly than the original form. The compiler is accessed
via the functions compile and compile-file.

A form can be evaluated only when loaded time, when evaluated, or when compiled
time. Theeval-whenconstruct is used for this.

(eval-when (compile) (form-to-be-executed-only-during-compile))

A form can also be executed at read time by prefacing it with the $ttihg

Lisp has a multiply inherited condition system. Conditions can be signalled with the
signal function. They can be caught via the handler-case form:

(handler-case

(stuff-to-evaluate)

(error-type-1 (condition-signalled) (stuff-to-do condition-signalled))
((error-type-2) (condition-signalled (stuff-to-do condition-signalled))

Lisp also supports facilities for recovering from signalled conditions. Although this is
important in using CORBA, as it is often convenient to provide the developer the
option to reinvoke server-side operations if they've signalled an unexpected error, it is
in practice unusual for the small-scale applications builder to need to implement
systems that do this, and we will not discuss this here.

Lisp Mapping V1.0 Compilation May 2000 B-7

B-8

Lisp Mapping V1.0

May 2000

Index

A

abstract valuetype
abstract interface A-12
Lisp-to-IDL A-12
Value box A-12

arrays B-2

Auxiliary methods B-6

B
Boolean 2-3
Boxed values 2-29

C
Certain Exceptions 3-2
Char 2-3
Classes B-5
Compilation B-7
Compiler mapping A-13
Conditions B-7
cons B-2
Context 3-3
CORBA
contributors 2
documentation set 2
Custom valuetypes 2-31

D

Defining methods 4-4

Distinguished Packages 2-6

Dynamic Implementation 4-2

Dynamic Invocation Interface convenience function 3-4
DynAny 3-12

E
Environment 3-2
Example

A Named Grid 4-6

F

Fixed 2-4

Floating Point Types 2-4
Functions B-4

G
generated Lisp 2-10

H
Hybrids A-9

|

IDL Compiler 3-13

IDL naming terminology 2-5
Implementation objects 4-2
INPUT 1-5

input.idl 1-5

Integer Types 2-4

L

Lisp evaluation B-1

Lisp naming terminology 2-5
Lisp values B-2

Lisp Mapping V1.0

M
Macros B-6
Mapping Concepts 2-1
Mapping for abstract interface 2-30
Mapping for abstract valuetypes 2-30
Mapping for Any

Constructors 2-24

Interaction with GIOP 2-25

Typecode accessor 2-24

value accessor 2-25
Mapping for any A-10
Mapping for array 2-19, A-8
Mapping for Attribute

normal attribute 2-14

readonly attribute 2-13
Mapping for Classifier 1-8
Mapping for const 2-19
Mapping for enum 2-15, A-7
Mapping for exception 2-21

condition hierarchy A-5

Naming exception classes A-6
Mapping for Feature 1-7

BehavioralFeature A-2

Feature package A-2

Feature visibility A-2

MM Naming Features A-1
Mapping for Interface 2-9
Mapping for interface

Generation of auxiliary classes A-11
Mapping for module A-7
Mapping for Namespace 1-7, 1-8
Mapping for Operation 2-11
Mapping for Package 1-7
Mapping for sequence 2-20

sequence-to-list A-8

sequence-to-vector A-9
Mapping for Struct 2-16
Mapping for struct A-5
Mapping for typedef 2-23, A-10
Mapping for Union 2-17
Mapping for union A-7
Mapping for valuetype 2-26
Mapping Goals

Adherence to IDL 1-3

Consistency 1-2

Ease-of-use 1-2

Flexibility 1-3

Performance 1-3
Mapping of basic types

boolean A-4

float and double A-5

long double A-5
Mapping of Module 2-14
Mapping of native types 4-1
Mapping of valuetype

supports A-11

unmarshalling and custom unmarshalling A-12
Mapping Principles 1-3
mapping pseudo-objects 3-1
Member accessors 2-17
Methods B-5

May 2000

Index-1

Index

N
NamedValue 3-2
Names
Alternative mappings A-4
Capitalization A-3
Character set A-3
Nesting A-3
Prefixes A-4
Naming Terminology 2-5
Nicknames for distinguished packages 2-6
NVList 3-3

O

Object 3-11

Object Management Group 1
address of 2

Octet 2-3

One-way 2-12

ORB
ORB initialization 3-8
ORB pseudo-object 3-8

OUTPUT 1-6

output.lisp 1-6

P

package_prefix pragma 2-8
Parameter Passing Modes 2-12
PortableServer Functions 4-2
Pseudo Interface 3-1

Pseudo Interface Mapping A-13

Index-2 Lisp Mapping V1.0

R
Request 3-4

S

Scoped Names 2-7

Scoped Symbols 2-7

Servant classes 4-2

Server side mapping A-14

ServerRequest 3-6

string 2-4

Stub classes 2-10

Symbols B-3

Syntax of corba
define-method 4-5

System exception 2-23

T
TypeCode 3-6
Types B-3

U

UML Metamodel 1-4
Unmarshalling issues 2-30
Usage example 4-7

\Y

Value factory 2-29
Valuetype members 2-27
Valuetype operations 2-28

W
Wochar, Wstring 2-4

May 2000

	Preface
	About the Object Management Group
	What is CORBA?

	Associated OMG Documents
	Acknowledgments

	1. Overview
	1.1 Introduction
	1.2 Why is the Lisp Mapping Difficult?
	1.3 Mapping Goals
	1.3.1 Ease-of-use
	1.3.2 Consistency
	1.3.3 Flexibility
	1.3.4 Performance
	1.3.5 Adherence to IDL

	1.4 Mapping Principles
	1.5 Expressing the Mapping in UML
	1.5.1 UML Metamodel
	1.5.2 UML Overview of a Mapping
	1.5.3 What a Mapping Needs to Specify
	1.5.4 Generation of Lisp from UML
	1.5.5 Invocation and Definition
	1.5.6 Pseudo IDL
	1.5.7 Additional information

	2. Mapping IDL to Lisp
	2.1 Mapping Concepts
	2.2 Semantics of Type Mapping
	2.3 Mapping for Basic Types
	2.3.1 Overview
	2.3.2 Boolean
	2.3.3 Char
	2.3.4 Octet
	2.3.5 Wchar, Wstring
	2.3.6 string
	2.3.7 Integer Types
	2.3.8 Floating Point Types
	2.3.9 Fixed

	2.4 Introduction to Named Types
	2.4.1 Naming Terminology

	2.5 Distinguished Packages
	2.5.1 Nicknames for Distinguished Packages

	2.6 Scoped Names and Scoped Symbols
	2.6.1 Definitions

	2.7 The package_prefix pragma
	2.7.1 Example

	2.8 Mapping for Interface
	2.8.1 Example
	2.8.2 Stub classes

	2.9 Mapping for Operation
	2.9.1 Parameter Passing Modes
	2.9.2 Return Values
	2.9.3 One-way
	2.9.4 Efficiency Optimization: Using macros instead of functions
	2.9.5 Exception
	2.9.6 Context
	2.9.7 Example

	2.10 Mapping for Attribute
	2.10.1 readonly attribute
	2.10.2 normal attribute
	2.10.3 Example

	2.11 Mapping of Module
	2.11.1 Example

	2.12 Mapping for enum
	2.12.1 Example

	2.13 Mapping for Struct
	2.13.1 Example

	2.14 Mapping for Union
	2.14.1 Member Accessors
	2.14.2 Example

	2.15 Mapping for const
	2.15.1 Example

	2.16 Mapping for array
	2.16.1 Example

	2.17 Mapping for sequence
	2.17.1 Example

	2.18 Mapping for Exception
	2.18.1 User Exception
	2.18.2 System Exception

	2.19 Mapping for typedef
	2.19.1 Example

	2.20 Mapping for any
	2.20.1 Constructors
	2.20.2 Typecode accessor
	2.20.3 value accessor
	2.20.4 Interaction with GIOP
	2.20.5 Additional examples of any usage

	2.21 Mapping for valuetype
	2.21.1 Inheritance of valuteype
	2.21.2 Valuetypes supporting interfaces
	2.21.3 Base class for valuetype
	2.21.4 Valuetype members
	2.21.5 Valuetype operations
	2.21.6 Boxed values
	2.21.7 Value factory
	2.21.8 Unmarshalling Issues
	2.21.9 Mapping for Abstract Valuetypes
	2.21.10 Example

	2.22 Custom Valuetypes

	3. Mapping Pseudo-Objects to Lisp
	3.1 Introduction
	3.1.1 Pseudo Interface

	3.2 Rules for Mapping Pseudo-objects
	3.2.1 Example

	3.3 Certain Exceptions
	3.4 Environment
	3.5 NamedValue
	3.6 NVList
	3.6.1 Example

	3.7 Context
	3.8 Request
	3.8.1 Example

	3.9 Dynamic Invocation Interface
	3.9.1 Dynamic Invocation Interface Convenience Function
	3.9.2 Example

	3.10 ServerRequest
	3.10.1 Example
	3.10.2 TypeCode
	3.10.3 Example

	3.11 ORB
	3.11.1 ORB initialization
	3.11.2 Example
	3.11.3 ORB pseudo-object
	3.11.4 Example

	3.12 Object
	3.12.1 Examples
	3.12.2 Principal

	3.13 DynAny
	3.13.1 Example

	3.14 The IDL Compiler
	3.14.1 Example

	4. Server-Side
	4.1 Mapping of Native Types
	4.2 Dynamic Implementation
	4.3 PortableServer Functions
	4.4 Implementation objects
	4.5 Servant classes
	4.5.1 Example

	4.6 Defining Methods
	4.6.1 Syntax of corba:define-method
	4.6.2 Description

	4.7 Examples
	4.7.1 Example: A Named Grid

	Appendix A - Detailed Design Choices
	Appendix B - Lisp Concepts
	Index

