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Executive Summary 
This exploratory project develops an innovative non-destructive evaluation (NDE) methodology for the 
quantification and prediction of accumulated fatigue damage in used metallic components using multi-
sensor fusion approaches. NDE for the condition of incoming used materials is essential to maximize the 
benefits of utilizing such materials for remanufacturing. Accurate estimation and prognostics of fatigue 
damage in incoming materials will not only enable effective materials screening to determine if a 
component can be reused but will also provide valuable information for the process optimization and 
control of downstream remanufacturing processes.  

In this project, we develop a machine learning based NDE technology by combining the strengths of 
linear ultrasonic (LU) and nonlinear ultrasonic (NLU) methods to predict loading conditions and fatigue 
levels. A remaining useful life (RUL) estimation framework with hierarchical classifiers and S-N curves 
for identifying fatigue damage levels and inferring RUL is developed. In addition, regression models are 
developed to non-destructively estimate residual stress and full width at half maximum (FWHM) based 
on LU and NLU measurements. The effectiveness of the proposed methods is demonstrated by using life 
cycle fatigue testing data for 5052-H32 aluminum alloy. 
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Quantitative Non-Destruction Evaluation of Fatigue Damage 
Based on Multi-Sensor Fusion 
REMADE Project: 18-01-RM-12  

Introduction 
Project Objectives and Benefits 

This exploratory project developed an innovative non-destructive evaluation (NDE) methodology for the 
quantification and prediction of accumulated fatigue damage in used metallic components using multi-
sensor fusion approaches. Understanding the condition of incoming used materials is essential to 
maximize the benefits of utilizing such materials for remanufacturing. Accurate estimation and 
prognostics of fatigue damage in used components will not only enable effective materials screening to 
determine if a component can be reused, but also provide valuable information for the process 
optimization and control of downstream remanufacturing processes. The proposed methodology will be 
useful in classifying the fatigue condition of metal components, predicting their remaining useful life 
(RUL), and guiding reuse of such materials for remanufacturing.  

The developed NDE technology is able to accurately predict both loading conditions and fatigue levels 
using only intermittent linear ultrasonic (LU) and nonlinear ultrasonic (NLU) measurements. This 
capability is further integrated with S-N curve to facilitate RUL prediction. We stress that existing NDE 
methods in the literature rely on continuous measurements over the entire use life, which are sometimes 
not available in industrial applications. As such, the developed NDE technology addresses a critical gap. 
In addition, we developed regression models for prediction of residual stresses and full width at half 
maximum (FWHM), which can provide essential information on material properties of used metal 
components. 

Project Approach 
The primary goal of this work is to develop a new NDE system (hardware) and associated data analytics 
methods (software) based on multi-sensor fusion. The team developed a new NDE methodology by 
combining the strengths of LU and NLU methods.  X-ray diffraction (XRD) was used to measure residual 
stress and FWHM, which are important material properties. While each NDE technology is sensitive to 
specific fatigue conditions, the integration of multiple sensors and multiple measurements has the 
potential of estimating different fatigue/crack conditions simultaneously.  

Four tasks were completed in 20 months. In Task 1, we established the testbed design for fatigue testing 
and obtained a database for fatigue development under cyclic loading. Task 1was led by co-PI Li and 
conducted at the Pennsylvania State University (PSU). Task 2 was focused on the refinement of the NLU 
method and the enhancement of its technology readiness level. This task was led by co-PI Matlack and 
performed at University of Illinois at Urbana-Champaign (UIUC). In Task 3, we developed a new NDE 
technology based on sensor fusion and data analytics. This task was led by PI Shao and conducted at 
UIUC. In Task 4, industry outreach was performed to maximize the impact of the proposed work on 
industry. This task was led by PI Shao and conducted at both UIUC and PSU. The industry participation 
in the project was promoted through different channels. First, John Deere worked with the team by 
providing input on materials of interest and discussing on the direction of interest to industry. Second, the 
PIs presented their methodology and results in two REMADE-hosted webinars and multiple Technology 
Summit and Peer Review events.  
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Project Accomplishments 
The project successfully developed a NDE methodology based on multi-sensor fusion and machine 
learning. Features were extracted from ex-situ LU and NLU measurements and subsequently selected to 
form a feature pool that could indicate the loading condition and fatigue level. An RUL estimation 
framework that consists of hierarchical classifiers and S-N curves was developed. In addition, regression 
models were developed to estimate materials properties including residual stress and FWHM based on the 
LU and NLU measurements. The effectiveness of the proposed methodology was demonstrated using life 
cycle fatigue testing data for 5052-H32 aluminum alloy. It was shown that our methodology could 
distinguish new and fatigue specimens with an accuracy of 97.53%. Also, the methodology performed 
very well for specimens that were tested under a lower loading condition. 

Predicting residual stress and FWHM was not included in the original project goals and objectives. This 
added capability is expected to be very helpful for determining important material properties in 
remanufacturing applications. In addition, we were not able to find baseline methods for RUL prediction 
from literature, because state-of-the-art methods cannot predict RUL using intermediate measurements. 
However, the developed methodology was thoroughly tested using cross-validation and satisfactory 
performance was demonstrated. 

Project Results 
Task 1. Life Cycle Fatigue Testing 

The objective of this task was to design and install a system for fatigue testing with the ability to collect 
in-situ acoustic emission (AE) signals during testing. The signals were used to quantify the fatigue 
development, e.g., pores, cracks, or dislocations. The specimen preparation and testing followed ASTM 
standard E466 (standard practice for conducting force controlled constant amplitude axial fatigue tests of 
metallic materials). The standard used as well as other details of the testing protocol was selected based 
on feedback from REMADE members in the remanufacturing industry. To examine the internal damage 
of the specimen, fatigue testing was stopped at 3 increments of time and the specimen will be taken from 
the fatigue machine for XRD testing to measure the residual stress and FWHM. The fatigue tests were 
also performed on the specimens until their failure to generate the S-N curves. Additional data, such as 
stress, strain, number of cycles (N), NDE signals (e.g., pulse) was also collected during fatigue testing.  
All experimental data was then used to establish an SQL database for fatigue development.  

Task 1.  Results 
 

  
(a) (b) 
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Figure 1 (a) MTS 100KN Landmark fatigue testing system, and (b) AE sensor setup on the 
fatigue sample.  

Task 1 developed a fatigue testing system that is equipped with an AE sensor. Figure 1a shows the fatigue 
testing system and Figure 1b presents a magnified image of the marked region in Figure 1a (blue 
rectangle) to display the AE sensor setup on the fatigue sample. The AE sensor is used to monitor the 
fatigue development. 

The developed testing system was used to apply load-controlled cyclic loading to un-notched Al5052 
series samples. Table 1 summarizes the experimental design. 

Table 1. Summary of testing conditions 
 

Load amplitude Fatigue cycles 
applied (N/Nf) 

Max. Stress applied 
(MPa) 

Sample 1-2 12.7kN 1/3 195MPa 

Sample 3-4 12.7kN 2/3 195MPa 

Sample 5,7 14.7kN 1/3 221-226MPa 

Sample 6,8 14.7kN 2/3 221-226MPa 

Sample 9-10 11.7kN 1/3 176MPa 

Sample 11-12 11.7kN 2/3 176MPa 

Ref 1-3 - - 
 

 

Figures 2 (a, b) present the AE hit count plots for the load amplitude of 14.7 kN and 12.7 kN, 
respectively. From the AE hit count data in Figures 2 (a, b), a similar trend is identified (marked with red 
line) and regarded as the start of the fatigue crack growth. Further analysis of the AE hit count data 
reveals that albeit, both the loading conditions exhibit a similar rising trend to distinguish the last stage, 
the rising trend of AE hit signals for the higher load amplitude (i.e., 14.7 kN case) follows a steeper trend 
than the low load amplitude (i.e., 12.7 kN case). 

  
(a) (b) 

Figure 2 AE hit count plots for (a) load amplitude of 14.7 kN, and (b) load amplitude of 12.7 kN. 
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We developed an interactive database to store and share the data generated in this project. Figure 3 
illustrates the structure of the database. Figures 4 and 5 display the screenshots of the database web app. 

 

Figure 3 Structure of the database web app 

 

Figure 4 Screenshot of the database web app: search function 
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Figure 5 Screenshot of the database web app: temperature profiles are shown 

Departure from the planned SOPO.  

1. We originally planned to produce 40 or more fatigued samples using 4 or 5 loading conditions. 
However, due to limited resources available in the project, we were able to acquire 15 samples using 
3 loading conditions. The impact of this departure was not significant, because our developed 
classification algorithms could be trained with a small amount of data. The validation results 
demonstrated the effectiveness of the developed methodology. 

2. We originally planned to characterize samples using XCT and SEM. During the project, we found 
that the measurement range of these techniques was very limited and would not provide enough 
useful insights into fatigue development. Therefore, we used X-ray diffraction (XRD) to measure 
residual stress and FWHM, which are important material properties. 

Summary and Significance 

In Task 1, we successfully developed a fatigue testing system that is equipped with in-situ AE 
measurement capability. Using the fatigue testing system, we tested 5052-H32 aluminum alloy specimens 
using three loading amplitudes. The experimental data were then used to establish S-N curves for this 
material. We designed and implemented an interactive database to store and publicly share all 
experimental data generated in this project. The data and results obtained in this task are expected to be 
useful for industrial practitioners who use 5000 series aluminum alloy materials (e.g., automotive body). 
The experimental data were also used in Tasks 3 for methodology validation. 

Task 2. Linear and Nonlinear Ultrasonic Testing  
The objective of this task is to integrate LU and NLU methods by modifying the measurement setup to 
simultaneously extract the linear (information about cracks) and nonlinear (information about 
dislocations) parameters. This was accomplished by measuring linear ultrasonic parameters (ultrasonic 
velocity) and nonlinear ultrasonic parameters (the acoustic nonlinearity, β) on fatigued samples from Task 
1.2. All samples that were measured with AE and XRD from Task 1 were measured. Output of this task 
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was data of measured β and ultrasonic velocity at different locations on samples that have increasing 
number of fatigue cycles.  This data was used in the data analytics models developed in Task 3. 
Discussions with John Deere were held to collect their feedback on the system integration. 

Task 2.  Results 
We measured all samples produced in Task 1 at nine locations as shown by Figure 6, and each location 
was measured three times to ensure the measurement repeatability. Figures 7 and 8 present ultrasonic 
velocity (extracted from LU measurement) and the acoustic nonlinearity β (extracted from NLU 
measurement) at different fatigue levels from all loading conditions. Differences were observed in both 
wave speed (Figure 7) and β parameter (Figure 8) between different fatigue levels and between different 
loading conditions. 

 

Figure 6 Measurement locations for linear and nonlinear ultrasonic testing 

 

Figure 7 Wave speed vs. fatigue cycle 

 

Figure 8 Nonlinear ultrasonic testing: β vs. fatigue cycle 

Summary and Significance 

In Task 2, we measured all samples generated in Task 1 using both LU and NLU techniques. Each sample 
was measured at nine locations to allow for the investigation on the spatial variations. Preliminary 
analysis showed that LU and NLU measurements could distinguish between fatigue levels, demonstrating 
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the feasibility of using LU and NLU methods for RUL prediction. The measurement data were later used 
in Task 3 for methodology development, refinement, and validation. The LU and NLU testing systems 
developed here provide an essential foundation for extending the methods to industrial applications. 

Task 3. Develop a RUL Prediction Model Based on Sensor Fusion  
The output of this task was an RUL prediction framework that can predict RUL simultaneously using data 
collected from LU and NLU measurements. We also developed regression models to predict residual 
stress and FWHM. Specific achievements in this task include the following: 

• Quantified the linear correlation between each NDE method and the RUL in terms of number of 
fatigue cycles,  

• Develop a framework to predict RUL using NDE data, and  
• Created regression models to predict residual stress and FWHM. 

All models developed in this task were thoroughly validated using experimental data collected in Tasks 1 
and 2. 

Task 3.  Results 
Our developed RUL prediction framework is illustrated by Figure 9. The NDE measurements from LU and 
NLU were first processed and critical features were extracted to reduce the data dimensionality. Then, 
hierarchical classifiers were developed to predict the loading condition and fatigue level using these 
features. Finally, we use S-N curve developed in Task 1 to calculate RUL.  

 

Figure 9 RUL prediction framework 

Figure 10 shows the classification performance. It is observed that class 0 has 100% recall rate and only 2 
measurements in class 5 are wrongly classified into class 0, implying that healthy samples are 
distinguishable from damaged samples. Similarly, both class 1 and class 2 have 96.3% recall rate and 
few measurements are wrongly predicted as these two classes, showing that the classifier can reliably 
identify the samples that had undergone the low-amplitude fatigue testing. Table 2 provides an 
example for RUL calculation using S-N curve. 
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Figure 10 Classification performance 

Table 2. RUL prediction for different locations on a class 3 sample (12.7kN, 1/3 fatigue life) with 
90% confidence level 

 

We also developed regression models to predict residual stress and FWHM and used cross-validation to 
evaluate the prediction performance. The prediction errors for residual stress and FWHM are 4.73% and 
0.8%, respectively. Further, Figures 11 and 12 show the scatter plots of predicted vs. actual values for 
residual stress and FWHM, respectively. 

 

Figure 11 Scatter plot of actual vs predicted residual stress 
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Figure 12 Scatter plot of actual vs predicted FWHM 

Departure from the planned SOPO.  

1. Predicting residual stress and FWHM was not included in the original project goals and objectives. 
This added capability is expected to be very helpful for determining important material properties in 
remanufacturing applications.  

2. We were not able to find baseline methods for RUL prediction from literature, because state-of-the-
art methods cannot predict RUL using intermittent measurements. We thoroughly tested he developed 
methodology using cross-validation and satisfactory performance was demonstrated. 

Summary and Significance 

In Task 3, we developed an RUL prediction framework and regression models for predicting residual 
stress and FWHM. As demonstrated using experimental data, our methodology was highly promising and 
achieved good accuracy. It also demonstrated that sensor fusion and machine learning were promising 
techniques for NDE of fatigue development. The development NDE methodology can be extended to 
other metal materials.  

Task 4. Industry Outreach  
Throughout the project, we actively reached out to industry and disseminate our results through webinars 
organized by REMADE. 

Other Project Products 
We created an interactive database as part of Task 1. The database website is 
http://remadende.web.illinois.edu. 

Project Conclusions and Recommendations 
A machine learning-based NDE methodology for assessing the accumulated fatigue damage level in used 
metallic components was successfully developed. The methodology can detect defects at various fatigue 
stages by combining the LU and NLU measurements and provide an ex-situ approach for the prognosis of 
useful life. Regression models were developed to estimate important material properties including 
FWHM and residual stress. The effectiveness of the methodology was demonstrated using experimental 
data. We envision that the developed NDE methodology will equip manufacturers with a responsive 
screening system for incoming used metallic components, and potentially lead to a significant increase in 
using used metallic components for remanufacturing.  

http://remadende.web.illinois.edu/
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Future work can be focused on testing the generalizability of the developed NDE technology and 
extending it to various industrial applications. It is also of great interest to develop integrated hardware 
and software (algorithms) for convenient usage in commercial practice. 
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