
Chapter 1

Introduction to

Writing Proofs in Mathematics

1.1 Statements and Conditional Statements

Much of our work in mathematics deals with statements. In mathematics, a state-

ment is a declarative sentence that is either true or false but not both. A statement

is sometimes called a proposition. The key is that there must be no ambiguity. To

be a statement, a sentence must be true or false, and it cannot be both. So a sen-

tence such as “The sky is beautiful” is not a statement since whether the sentence

is true or not is a matter of opinion. A question such as “Is it raining?” is not a

statement because it is a question and is not declaring or asserting that something

is true.

Some sentences that are mathematical in nature often are not statements be-

cause we may not know precisely what a variable represents. For example, the

equation 2x C 5 D 10 is not a statement since we do not know what x represents.

If we substitute a specific value for x (such as x D 3), then the resulting equation,

2 �3C5 D 10 is a statement (which is a false statement). Following are some more

examples:

� There exists a real number x such that 2x C 5 D 10.

This is a statement because either such a real number exists or such a real

number does not exist. In this case, this is a true statement since such a real

number does exist, namely x D 2:5.

1
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� For each real number x, 2x C 5 D 2

�
x C 5

2

�
.

This is a statement since either the sentence 2x C 5 D 2

�
x C 5

2

�
is true

when any real number is substituted for x (in which case, the statement is

true) or there is at least one real number that can be substituted for x and

produce a false statement (in which case, the statement is false). In this case,

the given statement is true.

� Solve the equation x2 � 7x C 10 D 0.

This is not a statement since it is a directive. It does not assert that something

is true.

� .a C b/2 D a2 C b2 is not a statement since it is not known what a and b

represent. However, the sentence, “There exist real numbers a and b such

that .aCb/2 D a2 Cb2” is a statement. In fact, this is a true statement since

there are such integers. For example, if a D 1 and b D 0, then .a C b/2 D
a2 C b2.

� Compare the statement in the previous item to the statement, “For all real

numbers a and b, .a C b/2 D a2 C b2.” This is a false statement since there

are values for a and b for which .a C b/2 ¤ a2 C b2. For example, if a D 2

and b D 3, then .a C b/2 D 52 D 25 and a2 C b2 D 22 C 32 D 13.

Progress Check 1.1 (Statements)

Which of the following sentences are statements? Do not worry about determining

whether a statement is true or false; just determine whether each sentence is a

statement or not.

1. 3 C 4 D 8.

2. 2 � 7 C 8 D 22.

3. .x � 1/ D
p

x C 11.

4. 2x C 5y D 7.

5. There are integers x and y such that 2x C 5y D 7:

6. There are integers x and y such that 23x C 37y D 52:

7. Given a line L and a point P not on that line, there is a unique line through

P that does not intersect L.

8. .a C b/3 D a3 C 3a2b C 3ab2 C b3:

9. .a C b/3 D a3 C 3a2b C 3ab2 C b3 for all real numbers a and b.
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10. The derivative of f .x/ D sin x is f 0.x/ D cos x.

11. Does the equation 3x2 � 5x � 7 D 0 have two real number solutions?

12. If ABC is a right triangle with right angle at vertex B , and if D is the

midpoint of the hypotenuse, then the line segment connecting vertex B to D

is half the length of the hypotenuse.

13. There do not exist three integers x, y, and z such that x3 C y3 D z3:

How Do We Decide If a Statement Is True or False?

In mathematics, we often establish that a statement is true by writing a mathemat-

ical proof. To establish that a statement is false, we often find a so-called coun-

terexample. (These ideas will be explored later in this chapter.) So mathematicians

must be able to discover and construct proofs. In addition, once the discovery has

been made, the mathematician must be able to communicate this discovery to oth-

ers who speak the language of mathematics. We will be dealing with these ideas

throughout the text.

For now, we want to focus on what happens before we start a proof. One thing

that mathematicians often do is to make a conjecture beforehand as to whether

the statement is true or false. This is often done through exploration. The role of

exploration in mathematics is often difficult because the goal is not to find a specific

answer but simply to investigate. Following are some techniques of exploration that

might be helpful.

Techniques of Exploration

� Guesswork and conjectures. Formulate and write down questions and con-

jectures. When we make a guess in mathematics, we usually call it a conjec-

ture.

� Examples. Constructing appropriate examples is extremely important.

Exploration often requires looking at lots of examples. In this way, we can

gather information that provides evidence that a statement is true, or we

might find an example that shows the statement is false. This type of ex-

ample is called a counterexample.

For example, if someone makes the conjecture that sin.2x/ D 2 sin.x/, for

all real numbers x, we can test this conjecture by substituting specific values
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for x. One way to do this is to choose values of x for which sin.x/ is known.

Using x D �

4
, we see that

sin
�
2
��

4

��
D sin

��

2

�
D 1; and

2 sin
��

4

�
D 2

 p
2

2

!
D

p
2:

Since 1 ¤
p

2, these calculations show that this conjecture is false. How-

ever, if we do not find a counterexample for a conjecture, we usually cannot

claim the conjecture is true. The best we can say is that our examples indi-

cate the conjecture is true. As an example, consider the conjecture that

If x and y are odd integers, then x C y is an even integer.

We can do lots of calculations, such as 3C7 D 10 and 5C11 D 16, and find

that every time we add two odd integers, the sum is an even integer. However,

it is not possible to test every pair of odd integers, and so we can only say

that the conjecture appears to be true. (We will prove that this statement is

true in the next section.)

� Use of prior knowledge. This also is very important. We cannot start from

square one every time we explore a statement. We must make use of our ac-

quired mathematical knowledge. For the conjecture that sin .2x/ D 2 sin.x/,

for all real numbers x, we might recall that there are trigonometric identities

called “double angle identities.” We may even remember the correct identity

for sin .2x/, but if we do not, we can always look it up. We should recall (or

find) that

for all real numbers x; sin.2x/ D 2 sin.x/cos.x/:

We could use this identity to argue that the conjecture “for all real numbers

x, sin.2x/ D 2 sin.x/” is false, but if we do, it is still a good idea to give a

specific counterexample as we did before.

� Cooperation and brainstorming. Working together is often more fruitful

than working alone. When we work with someone else, we can compare

notes and articulate our ideas. Thinking out loud is often a useful brain-

storming method that helps generate new ideas.
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Progress Check 1.2 (Explorations)

Use the techniques of exploration to investigate each of the following statements.

Can you make a conjecture as to whether the statement is true or false? Can you

determine whether it is true or false?

1. .a C b/2 D a2 C b2, for all real numbers a and b.

2. There are integers x and y such that 2x C 5y D 41.

3. If x is an even integer, then x2 is an even integer.

4. If x and y are odd integers, then x � y is an odd integer.

Conditional Statements

One of the most frequently used types of statements in mathematics is the so-called

conditional statement. Given statements P and Q, a statement of the form “If P

then Q” is called a conditional statement. It seems reasonable that the truth value

(true or false) of the conditional statement “If P then Q” depends on the truth val-

ues of P and Q. The statement “If P then Q” means that Q must be true whenever

P is true. The statement P is called the hypothesis of the conditional statement,

and the statement Q is called the conclusion of the conditional statement. Since

conditional statements are probably the most important type of statement in math-

ematics, we give a more formal definition.

Definition. A conditional statement is a statement that can be written in

the form “If P then Q,” where P and Q are sentences. For this conditional

statement, P is called the hypothesis and Q is called the conclusion.

Intuitively, “If P then Q” means that Q must be true whenever P is true.

Because conditional statements are used so often, a symbolic shorthand notation is

used to represent the conditional statement “If P then Q.” We will use the notation

P ! Q to represent “If P then Q.” When P and Q are statements, it seems

reasonable that the truth value (true or false) of the conditional statement P ! Q

depends on the truth values of P and Q. There are four cases to consider:

� P is true and Q is true.

� P is true and Q is false.

� P is false and Q is true.

� P is false and Q is false.
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The conditional statement P ! Q means that Q is true whenever P is true.

It says nothing about the truth value of Q when P is false. Using this as a guide,

we define the conditional statement P ! Q to be false only when P is true and

Q is false, that is, only when the hypothesis is true and the conclusion is false. In

all other cases, P ! Q is true. This is summarized in Table 1.1, which is called

a truth table for the conditional statement P ! Q. (In Table 1.1, T stands for

“true” and F stands for “false.”)

P Q P ! Q

T T T

T F F

F T T

F F T

Table 1.1: Truth Table for P ! Q

The important thing to remember is that the conditional statement P ! Q

has its own truth value. It is either true or false (and not both). Its truth value

depends on the truth values for P and Q, but some find it a bit puzzling that the

conditional statement is considered to be true when the hypothesis P is false. We

will provide a justification for this through the use of an example.

Example 1.3 Suppose that I say

“If it is not raining, then Daisy is riding her bike.”

We can represent this conditional statement as P ! Q where P is the statement,

“It is not raining” and Q is the statement, “Daisy is riding her bike.”

Although it is not a perfect analogy, think of the statement P ! Q as being

false to mean that I lied and think of the statement P ! Q as being true to mean

that I did not lie. We will now check the truth value of P ! Q based on the truth

values of P and Q.

1. Suppose that both P and Q are true. That is, it is not raining and Daisy is

riding her bike. In this case, it seems reasonable to say that I told the truth

and that P ! Q is true.

2. Suppose that P is true and Q is false or that it is not raining and Daisy is not

riding her bike. It would appear that by making the statement, “If it is not
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raining, then Daisy is riding her bike,” that I have not told the truth. So in

this case, the statement P ! Q is false.

3. Now suppose that P is false and Q is true or that it is raining and Daisy

is riding her bike. Did I make a false statement by stating that if it is not

raining, then Daisy is riding her bike? The key is that I did not make any

statement about what would happen if it was raining, and so I did not tell

a lie. So we consider the conditional statement, “If it is not raining, then

Daisy is riding her bike,” to be true in the case where it is raining and Daisy

is riding her bike.

4. Finally, suppose that both P and Q are false. That is, it is raining and Daisy

is not riding her bike. As in the previous situation, since my statement was

P ! Q, I made no claim about what would happen if it was raining, and so

I did not tell a lie. So the statement P ! Q cannot be false in this case and

so we consider it to be true.

Progress Check 1.4 (Explorations with Conditional Statements)

1. Consider the following sentence:

If x is a positive real number, then x2 C 8x is a positive real number.

Although the hypothesis and conclusion of this conditional sentence are not

statements, the conditional sentence itself can be considered to be a state-

ment as long as we know what possible numbers may be used for the vari-

able x. From the context of this sentence, it seems that we can substitute any

positive real number for x. We can also substitute 0 for x or a negative real

number for x provided that we are willing to work with a false hypothesis

in the conditional statement. (In Chapter 2, we will learn how to be more

careful and precise with these types of conditional statements.)

(a) Notice that if x D �3, then x2 C 8x D �15, which is negative. Does

this mean that the given conditional statement is false?

(b) Notice that if x D 4, then x2 C 8x D 48, which is positive. Does this

mean that the given conditional statement is true?

(c) Do you think this conditional statement is true or false? Record the

results for at least five different examples where the hypothesis of this

conditional statement is true.



8 Chapter 1. Introduction to Writing Proofs in Mathematics

2. “If n is a positive integer, then .n2 �nC41/ is a prime number.” (Remember

that a prime number is a positive integer greater than 1 whose only positive

factors are 1 and itself.)

To explore whether or not this statement is true, try using (and recording

your results) for n D 1, n D 2, n D 3, n D 4, n D 5, and n D 10. Then

record the results for at least four other values of n. Does this conditional

statement appear to be true?

Further Remarks about Conditional Statements

1. The conventions for the truth value of conditional statements may seem a

bit strange,especially the fact that the conditional statement is true when the

hypothesis of the conditional statement is false. The following example is

meant to show that this makes sense.

Suppose that Ed has exactly $52 in his wallet. The following four state-

ments will use the four possible truth combinations for the hypothesis and

conclusion of a conditional statement.

� If Ed has exactly $52 in his wallet, then he has $20 in his wallet. This

is a true statement. Notice that both the hypothesis and the conclusion

are true.

� If Ed has exactly $52 in his wallet, then he has $100 in his wallet. This

statement is false. Notice that the hypothesis is true and the conclusion

is false.

� If Ed has $100 in his wallet, then he has at least $50 in his wallet. This

statement is true regardless of how much money he has in his wallet.

In this case, the hypothesis is false and the conclusion is true.

� If Ed has $100 in his wallet, then he has at least $80 in his wallet. This

statement is true regardless of how much money he has in his wallet.

In this case, the hypothesis is false and the conclusion is false.

This is admittedly a contrived example but it does illustrate that the conven-

tions for the truth value of a conditional statement make sense. The message

is that in order to be complete in mathematics, we need to have conventions

about when a conditional statement is true and when it is false.

2. The fact that there is only one case when a conditional statement is false often

provides a method to show that a given conditional statement is false. In
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Progress Check 1.4, you were asked if you thought the following conditional

statement was true or false.

If n is a positive integer, then
�
n2 � n C 41

�
is a prime number.

Perhaps for all of the values you tried for n,
�
n2 � n C 41

�
turned out to be

a prime number. However, if we try n D 41, we get

n2 � n C 41 D 412 � 41 C 41

n2 � n C 41 D 412:

So in the case where n D 41, the hypothesis is true (41 is a positive integer)

and the conclusion is false
�
412 is not prime

�
. Therefore, 41 is a counterex-

ample for this conjecture and the conditional statement

“If n is a positive integer, then
�
n2 � n C 41

�
is a prime number”

is false. There are other counterexamples (such as n D 42, n D 45, and

n D 50), but only one counterexample is needed to prove that the statement

is false.

3. Although one example can be used to prove that a conditional statement is

false, in most cases, we cannot use examples to prove that a conditional

statement is true. For example, in Progress Check 1.4, we substituted val-

ues for x for the conditional statement “If x is a positive real number, then

x2 C 8x is a positive real number.” For every positive real number used

for x, we saw that x2 C 8x was positive. However, this does not prove the

conditional statement to be true because it is impossible to substitute every

positive real number for x. So, although we may believe this statement is

true, to be able to conclude it is true, we need to write a mathematical proof.

Methods of proof will be discussed in Section 1.2 and Chapter 3.

Progress Check 1.5 (Working with a Conditional Statement)

The following statement is a true statement, which is proven in many calculus texts.

If the function f is differentiable at a, then the function f is continuous at a.

Using only this true statement, is it possible to make a conclusion about the func-

tion in each of the following cases?
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1. It is known that the function f , where f .x/ D sin x, is differentiable at 0.

2. It is known that the function f , where f .x/ D 3
p

x, is not differentiable at

0.

3. It is known that the function f , where f .x/ D jxj, is continuous at 0.

4. It is known that the function f , where f .x/ D jxj
x

is not continuous at 0.

Closure Properties of Number Systems

The primary number system used in algebra and calculus is the real number sys-

tem. We usually use the symbol R to stand for the set of all real numbers. The real

numbers consist of the rational numbers and the irrational numbers. The rational

numbers are those real numbers that can be written as a quotient of two integers

(with a nonzero denominator), and the irrational numbers are those real numbers

that cannot be written as a quotient of two integers. That is, a rational number can

be written in the form of a fraction, and an irrational number cannot be written in

the form of a fraction. Some common irrational numbers are
p

2, � , and e. We

usually use the symbol Q to represent the set of all rational numbers. (The letter

Q is used because rational numbers are quotients of integers.) There is no standard

symbol for the set of all irrational numbers.

Perhaps the most basic number system used in mathematics is the set of nat-

ural numbers. The natural numbers consist of the positive whole numbers such

as 1, 2, 3, 107, and 203. We will use the symbol N to stand for the set of natural

numbers. Another basic number system that we will be working with is the set of

integers. The integers consist of zero, the positive whole numbers, and the nega-

tives of the positive whole numbers. If n is an integer, we can write n D n

1
. So

each integer is a rational number and hence also a real number.

We will use the letter Z to stand for the set of integers. (The letter Z is from the

German word, Zahlen, for numbers.) Three of the basic properties of the integers

are that the set Z is closed under addition, the set Z is closed under multiplica-

tion, and the set of integers is closed under subtraction. This means that

� If x and y are integers, then x C y is an integer;

� If x and y are integers, then x � y is an integer; and
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� If x and y are integers, then x � y is an integer.

Notice that these so-called closure properties are defined in terms of conditional

statements. This means that if we can find one instance where the hypothesis is true

and the conclusion is false, then the conditional statement is false.

Example 1.6 (Closure)

1. In order for the set of natural numbers to be closed under subtraction, the

following conditional statement would have to be true: If x and y are natural

numbers, then x � y is a natural number. However, since 5 and 8 are nat-

ural numbers, 5 � 8 D �3, which is not a natural number, this conditional

statement is false. Therefore, the set of natural numbers is not closed under

subtraction.

2. We can use the rules for multiplying fractions and the closure rules for the

integers to show that the rational numbers are closed under multiplication. If
a

b
and

c

d
are rational numbers (so a, b, c, and d are integers and b and d are

not zero), then
a

b
� c

d
D ac

bd
:

Since the integers are closed under multiplication, we know that ac and bd

are integers and since b ¤ 0 and d ¤ 0, bd ¤ 0. Hence,
ac

bd
is a rational

number and this shows that the rational numbers are closed under multipli-

cation.

Progress Check 1.7 (Closure Properties)

Answer each of the following questions.

1. Is the set of rational numbers closed under addition? Explain.

2. Is the set of integers closed under division? Explain.

3. Is the set of rational numbers closed under subtraction? Explain.

Exercises for Section 1.1

? 1. Which of the following sentences are statements?
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(a) 32 C 42 D 52.

(b) a2 C b2 D c2 .

(c) There exists integers a, b, and c such that a2 D b2 C c2.

(d) If x2 D 4, then x D 2.

(e) For each real number x, if x2 D 4, then x D 2.

(f) For each real number t , sin2 t C cos2 t D 1.

(g) sin x < sin
��

4

�
.

(h) If n is a prime number, then n2 has three positive factors.

(i) 1 C tan2 � D sec2 � .

(j) Every rectangle is a parallelogram.

(k) Every even natural number greater than or equal to 4 is the sum of two

prime numbers.

2. Identify the hypothesis and the conclusion for each of the following condi-

tional statements.

? (a) If n is a prime number, then n2 has three positive factors.

? (b) If a is an irrational number and b is an irrational number, then a � b is

an irrational number.

? (c) If p is a prime number, then p D 2 or p is an odd number.

? (d) If p is a prime number and p ¤ 2, then p is an odd number.

(e) If p ¤ 2 and p is an even number, then p is not prime.

? 3. Determine whether each of the following conditional statements is true or

false.

(a) If 10 < 7, then 3 D 4.

(b) If 7 < 10, then 3 D 4.

(c) If 10 < 7, then 3 C 5 D 8.

(d) If 7 < 10, then 3 C 5 D 8.

? 4. Determine the conditions under which each of the following conditional sen-

tences will be a true statement.

(a) If a C 2 D 5, then 8 < 5. (b) If 5 < 8, then a C 2 D 5.

5. Let P be the statement “Student X passed every assignment in Calculus I,”

and let Q be the statement “Student X received a grade of C or better in

Calculus I.”
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(a) What does it mean for P to be true? What does it mean for Q to be

true?

(b) Suppose that Student X passed every assignment in Calculus I and

received a grade of B�, and that the instructor made the statement

P ! Q. Would you say that the instructor lied or told the truth?

(c) Suppose that Student X passed every assignment in Calculus I and

received a grade of C�, and that the instructor made the statement

P ! Q. Would you say that the instructor lied or told the truth?

(d) Now suppose that Student X did not pass two assignments in Calculus

I and received a grade of D, and that the instructor made the statement

P ! Q. Would you say that the instructor lied or told the truth?

(e) How are Parts (5b), (5c), and (5d) related to the truth table for P ! Q?

6. Following is a statement of a theorem which can be proven using calculus or

precalculus mathematics. For this theorem, a, b, and c are real numbers.

Theorem If f is a quadratic function of the form

f .x/ D ax2 C bx C c and a < 0, then the function f has a

maximum value when x D �b

2a
.

Using only this theorem, what can be concluded about the functions given

by the following formulas?

? (a) g .x/ D �8x2 C 5x � 2

(b) h .x/ D �1

3
x2 C 3x

? (c) k .x/ D 8x2 � 5x � 7

(d) j .x/ D �71

99
x2 C 210

(e) f .x/ D �4x2 � 3x C 7

(f) F .x/ D �x4 C x3 C 9

7. Following is a statement of a theorem which can be proven using the quadratic

formula. For this theorem, a, b, and c are real numbers.

Theorem If f is a quadratic function of the form

f .x/ D ax2 C bx C c and ac < 0, then the function f has two

x-intercepts.

Using only this theorem, what can be concluded about the functions given

by the following formulas?

(a) g .x/ D �8x2 C 5x � 2

(b) h .x/ D �1

3
x2 C 3x

(c) k .x/ D 8x2 � 5x � 7

(d) j .x/ D �71

99
x2 C 210

(e) f .x/ D �4x2 � 3x C 7

(f) F .x/ D �x4 C x3 C 9
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8. Following is a statement of a theorem about certain cubic equations. For this

theorem, b represents a real number.

Theorem A. If f is a cubic function of the form f .x/ D x3 � x C b and

b > 1, then the function f has exactly one x-intercept.

Following is another theorem about x-intercepts of functions:

Theorem B. If f and g are functions with g.x/ D k � f .x/, where k is a

nonzero real number, then f and g have exactly the same x-intercepts.

Using only these two theorems and some simple algebraic manipulations,

what can be concluded about the functions given by the following formulas?

(a) f .x/ D x3 � x C 7

(b) g.x/ D x3 C x C 7

(c) h.x/ D �x3 C x � 5

(d) k.x/ D 2x3 C 2x C 3

(e) r.x/ D x4 � x C 11

(f) F.x/ D 2x3 � 2x C 7

? 9. (a) Is the set of natural numbers closed under division?

(b) Is the set of rational numbers closed under division?

(c) Is the set of nonzero rational numbers closed under division?

(d) Is the set of positive rational numbers closed under division?

(e) Is the set of positive real numbers closed under subtraction?

(f) Is the set of negative rational numbers closed under division?

(g) Is the set of negative integers closed under addition?

Explorations and Activities

10. Exploring Propositions. In Progress Check 1.2, we used exploration to

show that certain statements were false and to make conjectures that certain

statements were true. We can also use exploration to formulate a conjecture

that we believe to be true. For example, if we calculate successive powers of

2,
�
21; 22; 23; 24; 25; : : :

�
and examine the units digits of these numbers, we

could make the following conjectures (among others):

� If n is a natural number, then the units digit of 2n must be 2, 4, 6, or 8.

� The units digits of the successive powers of 2 repeat according to the

pattern “2, 4, 8, 6.”
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(a) Is it possible to formulate a conjecture about the units digits of succes-

sive powers of 4
�
41; 42; 43; 44; 45; : : :

�
? If so, formulate at least one

conjecture.

(b) Is it possible to formulate a conjecture about the units digit of numbers

of the form 7n � 2n, where n is a natural number? If so, formulate a

conjecture in the form of a conditional statement in the form “If n is a

natural number, then : : : .”

(c) Let f .x/ D e2x . Determine the first eight derivatives of this function.

What do you observe? Formulate a conjecture that appears to be true.

The conjecture should be written as a conditional statement in the form,

“If n is a natural number, then : : : .”

1.2 Constructing Direct Proofs

Preview Activity 1 (Definition of Even and Odd Integers)

Definitions play a very important role in mathematics. A direct proof of a proposi-

tion in mathematics is often a demonstration that the proposition follows logically

from certain definitions and previously proven propositions. A definition is an

agreement that a particular word or phrase will stand for some object, property, or

other concept that we expect to refer to often. In many elementary proofs, the an-

swer to the question, “How do we prove a certain proposition?”, is often answered

by means of a definition. For example, in Progress Check 1.2 on page 5, all of the

examples you tried should have indicated that the following conditional statement

is true:

If x and y are odd integers, then x � y is an odd integer.

In order to construct a mathematical proof of this conditional statement, we need a

precise definition what it means to say that an integer is an even integer and what

it means to say that an integer is an odd integer.

Definition. An integer a is an even integer provided that there exists an

integer n such that a D 2n. An integer a is an odd integer provided there

exists an integer n such that a D 2n C 1.

Using this definition, we can conclude that the integer 16 is an even integer since

16 D 2 � 8 and 8 is an integer. By answering the following questions, you should
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obtain a better understanding of these definitions. These questions are not here just

to have questions in the textbook. Constructing and answering such questions is

a way in which many mathemticians will try to gain a better understanding of a

definition.

1. Use the definitions given above to

(a) Explain why 28, �42, 24, and 0 are even integers.

(b) Explain why 51, �11, 1, and �1 are odd integers.

It is important to realize that mathematical definitions are not made randomly. In

most cases, they are motivated by a mathematical concept that occurs frequently.

2. Are the definitions of even integers and odd integers consistent with your

previous ideas about even and odd integers?

Preview Activity 2 (Thinking about a Proof)

Consider the following proposition:

Proposition. If x and y are odd integers, then x � y is an odd integer.

Think about how you might go about proving this proposition. A direct proof of

a conditional statement is a demonstration that the conclusion of the conditional

statement follows logically from the hypothesis of the conditional statement. Defi-

nitions and previously proven propositions are used to justify each step in the proof.

To help get started in proving this proposition, answer the following questions:

1. The proposition is a conditional statement. What is the hypothesis of this

conditional statement? What is the conclusion of this conditional statement?

2. If x D 2 and y D 3, then x � y D 6. Does this example prove that the

proposition is false? Explain.

3. If x D 5 and y D 3, then x � y D 15. Does this example prove that the

proposition is true? Explain.

In order to prove this proposition, we need to prove that whenever both x and y are

odd integers, x � y is an odd integer. Since we cannot explore all possible pairs of

integer values for x and y, we will use the definition of an odd integer to help us

construct a proof.
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4. To start a proof of this proposition, we will assume that the hypothesis of the

conditional statement is true. So in this case, we assume that both x and y

are odd integers. We can then use the definition of an odd integer to conclude

that there exists an integer m such that x D 2m C 1. Now use the definition

of an odd integer to make a conclusion about the integer y.

Note: The definition of an odd integer says that a certain other integer exists.

This definition may be applied to both x and y. However, do not use the

same letter in both cases. To do so would imply that x D y and we have not

made that assumption. To be more specific, if x D 2mC1 and y D 2mC1,

then x D y.

5. We need to prove that if the hypothesis is true, then the conclusion is true.

So, in this case, we need to prove that x � y is an odd integer. At this point,

we usually ask ourselves a so-called backward question. In this case, we

ask, “Under what conditions can we conclude that x � y is an odd integer?”

Use the definition of an odd integer to answer this question, and be careful

to use a different letter for the new integer than was used in Part (4).

Properties of Number Systems

At the end of Section 1.1, we introduced notations for the standard number systems

we use in mathematics. We also discussed some closure properties of the standard

number systems. For this text, it is assumed that the reader is familiar with these

closure properties and the basic rules of algebra that apply to all real numbers. That

is, it is assumed the reader is familiar with the properties of the real numbers shown

in Table 1.2.

Constructing a Proof of a Conditional Statement

In order to prove that a conditional statement P ! Q is true, we only need to

prove that Q is true whenever P is true. This is because the conditional statement

is true whenever the hypothesis is false. So in a direct proof of P ! Q, we assume

that P is true, and using this assumption, we proceed through a logical sequence

of steps to arrive at the conclusion that Q is true.

Unfortunately, it is often not easy to discover how to start this logical sequence

of steps or how to get to the conclusion that Q is true. We will describe a method

of exploration that often can help in discovering the steps of a proof. This method
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For all real numbers x, y, and z

Identity Properties x C 0 D x and x � 1 D x

Inverse Properties x C .�x/ D 0 and if x ¤ 0, then x � 1

x
D 1.

Commutative

Properties
x C y D y C x and xy D yx

Associative

Properties
.x C y/ C z D x C .y C z/ and .xy/ z D x .yz/

Distributive

Properties
x .y C z/ D xy C xz and .y C z/ x D yx C zx

Table 1.2: Properties of the Real Numbers

will involve working forward from the hypothesis, P , and backward from the con-

clusion, Q. We will use a device called the “know-show table” to help organize

our thoughts and the steps of the proof. This will be illustrated with the proposition

from Preview Activity 2.

Proposition. If x and y are odd integers, then x � y is an odd integer.

The first step is to identify the hypothesis, P , and the conclusion,Q, of the condi-

tional statement. In this case, we have the following:

P : x and y are odd integers. Q: x � y is an odd integer.

We now treat P as what we know (we have assumed it to be true) and treat Q as

what we want to show (that is, the goal). So we organize this by using P as the first

step in the know portion of the table and Q as the last step in the show portion of

the table. We will put the know portion of the table at the top and the show portion

of the table at the bottom.

Step Know Reason

P x and y are odd integers. Hypothesis

P1
:::

:::
:::

Q1

Q x � y is an odd integer. ?

Step Show Reason
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We have not yet filled in the reason for the last step because we do not yet know

how we will reach the goal. The idea now is to ask ourselves questions about what

we know and what we are trying to prove. We usually start with the conclusion

that we are trying to prove by asking a so-called backward question. The basic

form of the question is, “Under what conditions can we conclude that Q is true?”

How we ask the question is crucial since we must be able to answer it. We should

first try to ask and answer the question in an abstract manner and then apply it to

the particular form of statement Q.

In this case, we are trying to prove that some integer is an odd integer. So our

backward question could be, “How do we prove that an integer is odd?” At this

time, the only way we have of answering this question is to use the definition of an

odd integer. So our answer could be, “We need to prove that there exists an integer

q such that the integer equals 2q C 1.” We apply this answer to statement Q and

insert it as the next to last line in the know-show table.

Step Know Reason

P x and y are odd integers. Hypothesis

P1
:::

:::
:::

Q1 There exists an integer q such

that xy D 2q C 1.

Q x � y is an odd integer. Definition of an odd integer

Step Show Reason

We now focus our effort on proving statement Q1 since we know that if we can

prove Q1, then we can conclude that Q is true. We ask a backward question

about Q1 such as, “How can we prove that there exists an integer q such that

x � y D 2q C 1?” We may not have a ready answer for this question, and so we

look at the know portion of the table and try to connect the know portion to the

show portion. To do this, we work forward from step P , and this involves asking

a forward question. The basic form of this type of question is, “What can we

conclude from the fact that P is true?” In this case, we can use the definition of an

odd integer to conclude that there exist integers m and n such that x D 2mC1 and

y D 2n C 1. We will call this Step P1 in the know-show table. It is important to

notice that we were careful not to use the letter q to denote these integers. If we had

used q again, we would be claiming that the same integer that gives x � y D 2q C 1

also gives x D 2q C 1. This is why we used m and n for the integers x and y since

there is no guarantee that x equals y. The basic rule of thumb is to use a different

symbol for each new object we introduce in a proof. So at this point, we have:
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� Step P1. We know that there exist integers m and n such that x D 2m C 1

and y D 2n C 1.

� Step Q1. We need to prove that there exists an integer q such that

x � y D 2q C 1.

We must always be looking for a way to link the “know part” to the “show part”.

There are conclusions we can make from P1, but as we proceed, we must always

keep in mind the form of statement in Q1. The next forward question is, “What

can we conclude about x � y from what we know?” One way to answer this is

to use our prior knowledge of algebra. That is, we can first use substitution to

write x � y D .2m C 1/ .2n C 1/. Although this equation does not prove that

x � y is odd, we can use algebra to try to rewrite the right side of this equation

.2m C 1/ .2n C 1/ in the form of an odd integer so that we can arrive at step Q1.

We first expand the right side of the equation to obtain

x � y D .2m C 1/.2n C 1/

D 4mn C 2m C 2n C 1

Now compare the right side of the last equation to the right side of the equation in

step Q1. Sometimes the difficult part at this point is the realization that q stands

for some integer and that we only have to show that x � y equals two times some

integer plus one. Can we now make that conclusion? The answer is yes because

we can factor a 2 from the first three terms on the right side of the equation and

obtain

x � y D 4mn C 2m C 2n C 1

D 2.2mn C m C n/ C 1

We can now complete the table showing the outline of the proof as follows:
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Step Know Reason

P x and y are odd integers. Hypothesis

P1 There exist integers m and n

such that x D 2m C 1 and

y D 2n C 1.

Definition of an odd integer.

P 2 xy D .2m C 1/ .2n C 1/ Substitution

P 3 xy D 4mn C 2m C 2n C 1 Algebra

P 4 xy D 2 .2mn C m C n/ C 1 Algebra

P 5 .2mn C m C n/ is an integer. Closure properties of the

integers

Q1 There exists an integer q such

that xy D 2q C 1.

Use q D .2mn C m C n/

Q x � y is an odd integer. Definition of an odd integer

It is very important to realize that we have only constructed an outline of a

proof. Mathematical proofs are not written in table form. They are written in

narrative form using complete sentences and correct paragraph structure, and they

follow certain conventions used in writing mathematics. In addition, most proofs

are written only from the forward perspective. That is, although the use of the

backward process was essential in discovering the proof, when we write the proof

in narrative form, we use the forward process described in the preceding table. A

completed proof follows.

Theorem 1.8. If x and y are odd integers, then x � y is an odd integer.

Proof. We assume that x and y are odd integers and will prove that x � y is an odd

integer. Since x and y are odd, there exist integers m and n such that

x D 2m C 1 and y D 2n C 1:

Using algebra, we obtain

x � y D .2m C 1/ .2n C 1/

D 4mn C 2m C 2n C 1

D 2 .2mn C m C n/ C 1:

Since m and n are integers and the integers are closed under addition and multipli-

cation, we conclude that .2mn C m C n/ is an integer. This means that x � y has
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been written in the form .2q C 1/ for some integer q, and hence, x � y is an odd

integer. Consequently, it has been proven that if x and y are odd integers, then x �y
is an odd integer. �

Writing Guidelines for Mathematics Proofs

At the risk of oversimplification, doing mathematics can be considered to have two

distinct stages. The first stage is to convince yourself that you have solved the

problem or proved a conjecture. This stage is a creative one and is quite often how

mathematics is actually done. The second equally important stage is to convince

other people that you have solved the problem or proved the conjecture. This

second stage often has little in common with the first stage in the sense that it does

not really communicate the process by which you solved the problem or proved

the conjecture. However, it is an important part of the process of communicating

mathematical results to a wider audience.

A mathematical proof is a convincing argument (within the accepted stan-

dards of the mathematical community) that a certain mathematical statement is

necessarily true. A proof generally uses deductive reasoning and logic but also

contains some amount of ordinary language (such as English). A mathematical

proof that you write should convince an appropriate audience that the result you

are proving is in fact true. So we do not consider a proof complete until there is

a well-written proof. So it is important to introduce some writing guidelines. The

preceding proof was written according to the following basic guidelines for writing

proofs. More writing guidelines will be given in Chapter 3.

1. Begin with a carefully worded statement of the theorem or result to be

proven. This should be a simple declarative statement of the theorem or

result. Do not simply rewrite the problem as stated in the textbook or given

on a handout. Problems often begin with phrases such as “Show that” or

“Prove that.” This should be reworded as a simple declarative statement of

the theorem. Then skip a line and write “Proof” in italics or boldface font

(when using a word processor). Begin the proof on the same line. Make

sure that all paragraphs can be easily identified. Skipping a line between

paragraphs or indenting each paragraph can accomplish this.

As an example, an exercise in a text might read, “Prove that if x is an odd

integer, then x2 is an odd integer.” This could be started as follows:

Theorem. If x is an odd integer, then x2 is an odd integer.
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Proof : We assume that x is an odd integer : : :

2. Begin the proof with a statement of your assumptions. Follow the state-

ment of your assumptions with a statement of what you will prove.

Theorem. If x is an odd integer, then x2 is an odd integer.

Proof. We assume that x is an odd integer and will prove that x2 is an odd

integer.

3. Use the pronoun “we.” If a pronoun is used in a proof, the usual convention

is to use “we” instead of “I.” The idea is to stress that you and the reader

are doing the mathematics together. It will help encourage the reader to

continue working through the mathematics. Notice that we started the proof

of Theorem 1.8 with “We assume that : : : .”

4. Use italics for variables when using a word processor. When using a

word processor to write mathematics, the word processor needs to be capa-

ble of producing the appropriate mathematical symbols and equations. The

mathematics that is written with a word processor should look like typeset

mathematics. This means that italics font is used for variables, boldface font

is used for vectors, and regular font is used for mathematical terms such as

the names of the trigonometric and logarithmic functions.

For example, we do not write sin (x) or sin (x). The proper way to typeset

this is sin.x/.

5. Display important equations and mathematical expressions. Equations

and manipulations are often an integral part of mathematical exposition. Do

not write equations, algebraic manipulations, or formulas in one column with

reasons given in another column. Important equations and manipulations

should be displayed. This means that they should be centered with blank

lines before and after the equation or manipulations, and if the left side of

the equations do not change, it should not be repeated. For example,

Using algebra, we obtain

x � y D .2m C 1/ .2n C 1/

D 4mn C 2m C 2n C 1

D 2 .2mn C m C n/ C 1:

Since m and n are integers, we conclude that : : : .

6. Tell the reader when the proof has been completed. Perhaps the best

way to do this is to simply write, “This completes the proof.” Although it
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may seem repetitive, a good alternative is to finish a proof with a sentence

that states precisely what has been proven. In any case, it is usually good

practice to use some “end of proof symbol” such as �.

Progress Check 1.9 (Proving Propositions)

Construct a know-show table for each of the following propositions and then write

a formal proof for one of the propositions.

1. If x is an even integer and y is an even integer, then x C y is an even integer.

2. If x is an even integer and y is an odd integer, then x C y is an odd integer.

3. If x is an odd integer and y is an odd integer, then x C y is an even integer.

Some Comments about Constructing Direct Proofs

1. When we constructed the know-show table prior to writing a proof for Theo-

rem 1.8, we had only one answer for the backward question and one answer

for the forward question. Often, there can be more than one answer for these

questions. For example, consider the following statement:

If x is an odd integer, then x2 is an odd integer.

The backward question for this could be, “How do I prove that an integer is

an odd integer?” One way to answer this is to use the definition of an odd

integer, but another way is to use the result of Theorem 1.8. That is, we can

prove an integer is odd by proving that it is a product of two odd integers.

The difficulty then is deciding which answer to use. Sometimes we can

tell by carefully watching the interplay between the forward process and the

backward process. Other times, we may have to work with more than one

possible answer.

2. Sometimes we can use previously proven results to answer a forward ques-

tion or a backward question. This was the case in the example given in

Comment (1), where Theorem 1.8 was used to answer a backward question.

3. Although we start with two separate processes (forward and backward), the

key to constructing a proof is to find a way to link these two processes. This

can be difficult. One way to proceed is to use the know portion of the table

to motivate answers to backward questions and to use the show portion of

the table to motivate answers to forward questions.
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4. Answering a backward question can sometimes be tricky. If the goal is the

statement Q, we must construct the know-show table so that if we know that

Q1 is true, then we can conclude that Q is true. It is sometimes easy to

answer this in a way that if it is known that Q is true, then we can conclude

that Q1 is true. For example, suppose the goal is to prove

y2 D 4;

where y is a real number. A backward question could be, “How do we

prove the square of a real number equals four?” One possible answer is to

prove that the real number equals 2. Another way is to prove that the real

number equals �2. This is an appropriate backward question, and these are

appropriate answers.

However, if the goal is to prove

y D 2;

where y is a real number, we could ask, “How do we prove a real number

equals 2?” It is not appropriate to answer this question with “prove that the

square of the real number equals 4.” This is because if y2 D 4, then it is not

necessarily true that y D 2.

5. Finally, it is very important to realize that not every proof can be constructed

by the use of a simple know-show table. Proofs will get more complicated

than the ones that are in this section. The main point of this section is not

the know-show table itself, but the way of thinking about a proof that is in-

dicated by a know-show table. In most proofs, it is very important to specify

carefully what it is that is being assumed and what it is that we are trying

to prove. The process of asking the “backward questions” and the “forward

questions” is the important part of the know-show table. It is very impor-

tant to get into the “habit of mind” of working backward from what it is we

are trying to prove and working forward from what it is we are assuming.

Instead of immediately trying to write a complete proof, we need to stop,

think, and ask questions such as

� Just exactly what is it that I am trying to prove?

� How can I prove this?

� What methods do I have that may allow me to prove this?

� What are the assumptions?

� How can I use these assumptions to prove the result?
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Progress Check 1.10 (Exploring a Proposition)

Construct a table of values for
�
3m2 C 4m C 6

�
using at least six different integers

for m. Make one-half of the values for m even integers and the other half odd

integers. Is the following proposition true or false?

If m is an odd integer, then
�
3m2 C 4m C 6

�
is an odd integer.

Justify your conclusion. This means that if the proposition is true, then you should

write a proof of the proposition. If the proposition is false, you need to provide an

example of an odd integer for which
�
3m2 C 4m C 6

�
is an even integer.

Progress Check 1.11 (Constructing and Writing a Proof)

The Pythagorean Theorem for right triangles states that if a and b are the lengths

of the legs of a right triangle and c is the length of the hypotenuse, then a2 C b2 D
c2. For example, if a D 5 and b D 12 are the lengths of the two sides of a right

triangle and if c is the length of the hypotenuse, then the c2 D 52 C 122 and so

c2 D 169. Since c is a length and must be positive, we conclude that c D 13.

Construct and provide a well-written proof for the following proposition.

Proposition. If m is a real number and m, m C 1, and m C 2 are the lengths of the

three sides of a right triangle, then m D 3.

Although this proposition uses different mathematical concepts than the one used

in this section, the process of constructing a proof for this proposition is the same

forward-backward method that was used to construct a proof for Theorem 1.8.

However, the backward question, “How do we prove that m D 3?” is simple

but may be difficult to answer. The basic idea is to develop an equation from the

forward process and show that m D 3 is a solution of that equation.

Exercises for Section 1.2

1. Construct a know-show table for each of the following statements and then

write a formal proof for one of the statements.

? (a) If m is an even integer, then m C 1 is an odd integer.

(b) If m is an odd integer, then m C 1 is an even integer.
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2. Construct a know-show table for each of the following statements and then

write a formal proof for one of the statements.

(a) If x is an even integer and y is an even integer, then x C y is an even

integer.

(b) If x is an even integer and y is an odd integer, then x C y is an odd

integer.

? (c) If x is an odd integer and y is an odd integer, then x C y is an even

integer.

3. Construct a know-show table for each of the following statements and then

write a formal proof for one of the statements.

(a) If m is an even integer and n is an integer, then m � n is an even integer.

? (b) If n is an even integer, then n2 is an even integer.

(c) If n is an odd integer, then n2 is an odd integer.

4. Construct a know-show table and write a complete proof for each of the

following statements:

(a) If m is an even integer, then 5m C 7 is an odd integer.

(b) If m is an odd integer, then 5m C 7 is an even integer.

(c) If m and n are odd integers, then mn C 7 is an even integer.

5. Construct a know-show table and write a complete proof for each of the

following statements:

(a) If m is an even integer, then 3m2 C 2m C 3 is an odd integer.

(b) If m is an odd integer, then 3m2 C 7m C 12 is an even integer.

6. In this section, it was noted that there is often more than one way to answer a

backward question. For example, if the backward question is, “How can we

prove that two real numbers are equal?”, one possible answer is to prove that

their difference equals 0. Another possible answer is to prove that the first is

less than or equal to the second and that the second is less than or equal to

the first.

? (a) Give at least one more answer to the backward question, “How can we

prove that two real numbers are equal?”
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(b) List as many answers as you can for the backward question, “How can

we prove that a real number is equal to zero?”

(c) List as many answers as you can for the backward question, “How can

we prove that two lines are parallel?”

? (d) List as many answers as you can for the backward question, “How can

we prove that a triangle is isosceles?”

7. Are the following statements true or false? Justify your conclusions.

(a) If a, b and c are integers, then ab C ac is an even integer.

(b) If b and c are odd integers and a is an integer, then ab C ac is an even

integer.

8. Is the following statement true or false? Justify your conclusion.

If a and b are nonnegative real numbers and a C b D 0, then a D 0.

Either give a counterexample to show that it is false or outline a proof by

completing a know-show table.

9. An integer a is said to be a type 0 integer if there exists an integer n such

that a D 3n. An integer a is said to be a type 1 integer if there exists an

integer n such that a D 3n C 1. An integer a is said to be a type 2 integer

if there exists an integer m such that a D 3m C 2.

? (a) Give examples of at least four different integers that are type 1 integers.

(b) Give examples of at least four different integers that are type 2 integers.

? (c) By multiplying pairs of integers from the list in Exercise (9a), does it

appear that the following statement is true or false?

If a and b are both type 1 integers, then a � b is a type 1 integer.

10. Use the definitions in Exercise (9) to help write a proof for each of the fol-

lowing statements:

? (a) If a and b are both type 1 integers, then a C b is a type 2 integer.

(b) If a and b are both type 2 integers, then a C b is a type 1 integer.

(c) If a is a type 1 integer and b is a type 2 integer, then a � b is a type 2

integer.

(d) If a and b are both type 2 integers, then a � b is type 1 integer.
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11. Let a, b, and c be real numbers with a ¤ 0. The solutions of the quadratic

equation ax2 C bx C c D 0 are given by the quadratic formula, which

states that the solutions are x1 and x2, where

x1 D �b C
p

b2 � 4ac

2a
and x2 D �b �

p
b2 � 4ac

2a
:

(a) Prove that the sum of the two solutions of the quadratic equation

ax2 C bx C c D 0 is equal to �b

a
.

(b) Prove that the product of the two solutions of the quadratic equation

ax2 C bx C c D 0 is equal to
c

a
.

12. (a) See Exercise (11) for the quadratic formula, which gives the solutions

to a quadratic equation. Let a, b, and c be real numbers with a ¤ 0.

The discriminant of the quadratic equation ax2 CbxCc D 0 is defined

to be b2 � 4ac. Explain how to use this discriminant to determine if

the quadratic equation has two real number solutions, one real number

solution, or no real number solutions.

(b) Prove that if a, b, and c are real numbers with a > 0 and c < 0, then

one solutions of the quadratic equation ax2 C bx C c D 0 is a positive

real number.

(c) Prove that if a, b, and c are real numbers with a ¤ 0, b > 0, and

b < 2
p

ac, then the quadratic equation ax2 C bx C c D 0 has no real

number solutions.

Explorations and Activities

13. Pythagorean Triples. Three natural numbers a, b, and c with a < b < c

are said to form a Pythagorean triple provided that a2 C b2 D c2. For

example, 3, 4, and 5 form a Pythagorean triple since 32 C 42 D 52. The

study of Pythagorean triples began with the development of the Pythagorean

Theorem for right triangles, which states that if a and b are the lengths

of the legs of a right triangle and c is the length of the hypotenuse, then

a2 C b2 D c2 . For example, if the lengths of the legs of a right triangle are

4 and 7 units, then c2 D 42 C 72 D 63, and the length of the hypotenuse

must be
p

63 units (since the length must be a positive real number). Notice

that 4, 7, and
p

63 are not a Pythagorean triple since
p

63 is not a natural

number.
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(a) Verify that each of the following triples of natural numbers form a

Pythagorean triple.

� 3, 4, and 5

� 6, 8, and 10

� 8, 15, and 17

� 10, 24, and 26

� 12, 35, and 37

� 14, 48, and 50

(b) Does there exist a Pythagorean triple of the form m, m C 7, and m C 8,

where m is a natural number? If the answer is yes, determine all such

Pythagorean triples. If the answer is no, prove that no such Pythagorean

triple exists.

(c) Does there exist a Pythagorean triple of the form m, mC11, and mC12,

where m is a natural number? If the answer is yes, determine all such

Pythagorean triples. If the answer is no, prove that no such Pythagorean

triple exists.

14. More Work with Pythagorean Triples. In Exercise (13), we verified that

each of the following triples of natural numbers are Pythagorean triples:

� 3, 4, and 5

� 6, 8, and 10

� 8, 15, and 17

� 10, 24, and 26

� 12, 35, and 37

� 14, 48, and 50

(a) Focus on the least even natural number in each of these Pythagorean

triples. Let n be this even number and find m so that n D 2m. Now try

to write formulas for the other two numbers in the Pythagorean triple

in terms of m. For example, for 3, 4, and 5, n D 4 and m D 2, and for

8, 15, and 17, n D 8 and m D 4. Once you think you have formulas,

test your results with m D 10. That is, check to see that you have a

Pythagorean triple whose smallest even number is 20.

(b) Write a proposition and then write a proof of the proposition. The

proposition should be in the form: If m is a natural number and m � 2,

then . . . . . .
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1.3 Chapter 1 Summary

Important Definitions

� Statement, page 1

� Conditional statement, page 5

� Even integer, page 15

� Odd integer, page 15

� Pythagorean triple, page 29

Important Number Systems and Their Properties

� The natural numbers, N; the integers, Z; the rational numbers, Q; and the

real numbers, R. See page 10

� Closure Properties of the Number Systems

Number System Closed Under

Natural Numbers, N addition and multiplication

Integers, Z addition, subtraction, and multiplication

Rational Numbers, Q
addition, subtraction, multiplication, and

division by nonzero rational numbers

Real Numbers, R
addition, subtraction, multiplication, and

division by nonzero real numbers

� Inverse, commutative, associative, and distributive properties of the real num-

bers. See page 18.

Important Theorems and Results

� Exercise (1), Section 1.2

If m is an even integer, then m C 1 is an odd integer.

If m is an odd integer, then m C 1 is an even integer.

� Exercise (2), Section 1.2

If x is an even integer and y is an even integer, then x C y is an even integer.

If x is an even integer and y is an odd integer, then x C y is an odd integer.

If x is an odd integer and y is an odd integer, then x C y is an even integer.

� Exercise (3), Section 1.2. If x is an even integer and y is an integer, then

x � y is an even integer.
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� Theorem 1.8. If x is an odd integer and y is an odd integer, then x � y is an

odd integer.

� The Pythagorean Theorem, page 26. If a and b are the lengths of the legs

of a right triangle and c is the length of the hypotenuse, then a2 C b2 D c2.


