
Chapter 10 Java: an Introduction to Computer Science & Programming - Walter Savitch 1

Chapter 10

Vectors
Linked Data Structures

Dynamic Data Structures

Chapter 10 Java: an Introduction to Computer Science & Programming - Walter Savitch 2

Overview

This chapter is about data structures that are dynamic:
They can grow and shrink while your program is running

Vectors are similar to arrays but are more flexible.

Linked lists are a dynamic data structure commonly used in
many programming languages.

Chapter 10 Java: an Introduction to Computer Science & Programming - Walter Savitch 3

Vectors

"Well, I'll eat it," said Alice, "and if it makes me grow larger, I can
reach the key; and if it makes me grow smaller, I can creep
under the door; so either way I'll get into the garden…"

Lewis Carroll, Alice's Adventures in Wonderland

VECTORS
Think of them as arrays that can get larger or smaller

when a program is running.

Chapter 10 Java: an Introduction to Computer Science & Programming - Walter Savitch 4

Using Vectors

Vectors are not automatically part of Java
» they are in the util library
» you must import java.util.*

Create a vector with an initial capacity of 20 elements:
Vector v = new Vector(20);

Chapter 10 Java: an Introduction to Computer Science & Programming - Walter Savitch 5

Initial Capacity and Efficiency:
a Classic Engineering Tradeoff

Engineering involves making difficult tradeoffs
» "There's no such thing as a free lunch."

– an American saying
» Usually, if you gain something you lose something somewhere

else

Choosing the initial capacity of a vector is an example of a tradeoff
» making it too large wastes allocated memory space
» making it too small slows execution

– it takes time to resize vectors dynamically

Solution?
» optimize one at the expense of the other
» or make good compromises

– choose a size that is not too big and not too small

Chapter 10 Java: an Introduction to Computer Science & Programming - Walter Savitch 6

Vector Syntax

Array: a is a String array

a[i] = "Hi, Mom!";

String temp = a[i];

Vector: v is a vector

v.setElementAt("Hi, Mom!", i);

String temp =
(String)v.elementAt(i);

Instead of the index in
brackets and = for
assignment, use vector
method setElementAt
with two arguments, the
value and the index

Use vector method
elementAt(int index) to
retrieve the value of an element

Note: the cast to String is
required because the base type of
vector elements is Object

The idea is the same as for arrays, but the syntax is different
As with arrays, the index must be in the range 0 to (size-of-the-vector – 1)

Chapter 10 Java: an Introduction to Computer Science & Programming - Walter Savitch 7

Vector Methods

The vector class includes many useful methods:
» constructors
» array-like methods, e.g. setElementAt & elementAt
» methods to add elements
» methods to remove elements
» search methods
» methods to work with the vector's size and capacity, e.g. to

find its size and check if it is empty
» a clone method to copy a vector

See the text for more information

Chapter 10 Java: an Introduction to Computer Science & Programming - Walter Savitch 8

A little Detail about setElementAt

"The devil's in the details."
– an American engineering saying

Vectors put values in successive indexes
» addElement is used to put initial values in a vector
» new values can be added only at the next higher index

You cannot use setElementAt to put a value at just any index
» setElementAt can be used to assign the value of an

indexed variable only if it has been previously assigned a
value with addElement

Chapter 10 Java: an Introduction to Computer Science & Programming - Walter Savitch 9

Base Type of Vectors
The base type of an array is specified when the array is declared
» all elements of arrays must be of the same type

The base type of a vector is Object
» elements of a vector can be of any class type
» in fact, elements of a vector can be of different class types!
» to store primitive types in a vector they must be converted to a

corresponding wrapper class

Good Programming Practice
Although vectors allow elements in the same vector to be of different
class types, it is best not to have a mix of classes in the same vector -

– it is best to have all elements in a vector be the same class type.

Chapter 10 Java: an Introduction to Computer Science & Programming - Walter Savitch 10

Detail: One Consequence of the Base
Type of Vectors Being Object

The following code looks very reasonable but will produce an error
saying that the class Object does not have a method named length:

Vector v = new Vector(10);
String greeting = "Hi, Mom!";
v.addElement(greeting);
System.out.println("Length is " +

(v.elementAt(0)).length());

String, of course, does have a length method, but Java sees the
type of v.elementAt(0) as Object, not String

Solution? Cast v.elementAt(0) to String:
System.out.println

("Length is " +((String)(v.elementAt(0))).length());

Chapter 10 Java: an Introduction to Computer Science & Programming - Walter Savitch 11

Arrays Versus Vectors

Arrays
Bad:

Size is fixed when declared
Inefficient storage: can use a
partially full array, but space
has been allocated for the full
size
If one more value needs to be
added past the maximum size,
the array needs to be
redeclared

Good:
More efficient (faster)
execution
Allows primitive type elements

Vectors
Good :

Size is not fixed
Better storage efficiency: a
partially full vector may be
allocated just the space it
needs
If one more value needs to be
added past the maximum size,
the vector size increases
automatically

Bad:
Less efficient (slower)
execution
Elements must be class types
(primitive types not allowed)

Chapter 10 Java: an Introduction to Computer Science & Programming - Walter Savitch 12

One More Detail:
Size Versus Capacity

Be sure to understand the difference between capacity and size
of a vector:
» capacity is the declared size of the vector (v.capacity())

– the current maximum number of elements
» size is the actual number of elements being used (v.size())

– the number of elements that contain valid values, not
garbage

– remember that vectors add values only in successive
indexes

Loops that read vector elements should be limited by the value
of size, not capacity, to avoid reading garbage values

Chapter 10 Java: an Introduction to Computer Science & Programming - Walter Savitch 13

Programming Tip: Adding to a Vector

Can use addElement
» adds elements at index positions in order

Can also use insertElementAt to add to a vector
» specify the position where you want to insert the element:
v.insertElementAt(element, index);

» index must be less than or equal to size
» If index is equal to size, then element will be inserted at

the end (the same place where addElement would add it).
» If index is greater than size, you will get a run-time error

that says ArrayIndexOutOfBoundsException
» All elements at position index or higher will have their index

increased by 1
» There is also a removeElementAt(index) method

Chapter 10 Java: an Introduction to Computer Science & Programming - Walter Savitch 14

Programming Tip:
Increasing Storage Efficiency of Vectors

A vector automatically increases its capacity if elements beyond
its current capacity are added (see next slide)

But a vector does not automatically decrease its capacity if
elements are deleted

The method trimToSize() shrinks the capacity of a vector to its
current size so there is no extra, wasted space
» the allocated space is reduced to whatever is currently being

used

To use storage more efficiently, use trimToSize() when a
vector will not need its extra capacity later

Chapter 10 Java: an Introduction to Computer Science & Programming - Walter Savitch 15

Declaring a Vector

Vector v = new Vector (10); // capacity=10,
doubles

Vector v = new Vector (); // capacity=10, doubles

Vector v = new Vector (n); // capacity=n, doubles

Vector v = new Vector (n,p); // capacity=n,
increases by p

Chapter 10 Java: an Introduction to Computer Science & Programming - Walter Savitch 16

And Another Detail:
Correcting the Return Type of clone

The method clone is used to make a copy of a vector but its
return type is Object, not Vector
» of course you want it to be Vector, not Object

So, what do you do?
» Cast it to Vector
Vector v = new Vector(10);

Vector otherV;
otherV = v;
Vector otherV = (Vector)v.clone();

This just makes otherV
another name for the
vector v (there is only one
copy of the vector and it
now has two names)

This creates a second copy of v
with a different name, otherV

Chapter 10 Java: an Introduction to Computer Science & Programming - Walter Savitch 17

Linked Lists

"Cheatem"

"and"

"Howe"

head
"Duey"

One node
in the list

Data in
a node

A link in
a node

Null link
signifying
the end of
the list

null

Linked list consists of objects
known as nodes
Each node has a place for
data and a link to another
node
Links are shown as arrows

Each node is an object of a
class that has two instance
variables: one for the data
and one for the link

The head of the list
is not a node.

Chapter 10 Java: an Introduction to Computer Science & Programming - Walter Savitch 18

ListNode Class:
Instance Variables and Constructor

public class ListNode
{

private String data;
private ListNode link;

public ListNode(String newData, ListNode linkValue)
{

data = newData;
link = linkValue;

}

Two parameters for the constructor:
data value for the new node
Link value for the new node

"Duey"

Chapter 10 Java: an Introduction to Computer Science & Programming - Walter Savitch 19

Start at beginning
of list

Stepping through a List

"Cheatem"

"and"

"Howe"

head
"Duey"

When position is at this
last node,
position.getLink()
is null and the loop will
terminate.

null

ListNode position;
position = head;
while (position != null)
{

...
position =

position.getLink();
}

position

This reference is
position.getLink().

Moves to next
node in the list.

Excerpt from showList
in StringLinkedList

Chapter 10 Java: an Introduction to Computer Science & Programming - Walter Savitch 20

Adding a Node

To add a node at the beginning of the list:
public void addANodeToStart(String addData)
{

head = new ListNode(addData, head);
}

The new node will point to the old start of the list, which is what
head pointed to.
The value of head is changed to point to the new node, which is
now the first node in the list.

Chapter 10 Java: an Introduction to Computer Science & Programming - Walter Savitch 21

Deleting a Node
To delete a node from the beginning of the list:
public void deleteHeadNode()
{

if (head != null)
{

head = head.getLink();
}
else

// prints an error message and exits
...

Doesn't try to delete from an empty list.
Removes first element and sets head to point to the node that
was second but is now first.

Chapter 10 Java: an Introduction to Computer Science & Programming - Walter Savitch 22

Gotcha: Null Pointer Exception

A Null pointer exception occurs when your code tries to access
some class variable and the class variable does not name an
object.
List nodes use null to indicate that a link instance variable
contains no reference.
NullPointerException is not an exception that has to be
caught or declared.
» Usually indicates you need to fix your code, not add a catch

block.

Chapter 10 Java: an Introduction to Computer Science & Programming - Walter Savitch 23

Node Inner Classes

Using an inner class makes StringLinkedList self-
contained because it doesn't depend on a separate file
Making the inner class private makes it safer from the point of
view of information hiding

public class StringLinkedList
{

private ListNode head;
<methods for StringLinkedList inserted here>

private class ListNode
{

<Define ListNode instance variables and methods here>
}

}

Chapter 10 Java: an Introduction to Computer Science & Programming - Walter Savitch 24

Iterators
An object that allows a program to step through a collection of
objects and do some action on each one is called an iterator.
For arrays, an index variable can be used as an iterator, with the
action of going to the next thing in the list being something like:
index++;

In a linked list, a reference to the node can be used as an
iterator.
StringLinkedListSelfContained has an instance variable
called current that is used to keep track of where the iteration
is.
The goToNext method moves to the next node in the list by
using the statement:
current = current.link;

Chapter 10 Java: an Introduction to Computer Science & Programming - Walter Savitch 25

goToNext

"Cheatem"

"and"

"Howe"

head
"Duey"

null

previous

current

"Cheatem"

"and"

"Howe"

head
"Duey"

null

previous

current

current.link

current = current.link gives
current a reference to this node

Before After

Chapter 10 Java: an Introduction to Computer Science & Programming - Walter Savitch 26

Other Methods in the Linked List
with Iterator

getDataAtCurrent()—returns the data part of the node that
the iterator (current) is at
moreToIterate()—returns a boolean value that will be true if
the iterator is not at the end of the list
resetIteration()—moves the iterator to the beginning of the
list

Can write methods to add and delete nodes at the iterator
instead of only at the head of the list.
» Following slides show diagrams illustrating the add and

delete methods.

Chapter 10 Java: an Introduction to Computer Science & Programming - Walter Savitch 27

Adding a Node
Step 1

"Cheatem"

"and"

head
"Duey"

"Howe"
null

newNode

current

Before

"Cheatem"

"and"

head
"Duey"

"Howe"
null

newNode

current

After

Create the node with reference newNode
Add data to the node
newNode.link = current.link

null

Chapter 10 Java: an Introduction to Computer Science & Programming - Walter Savitch 28

Adding a Node
Step 2

"Cheatem"

"and"

head
"Duey"

"Howe"
null

newNode

current

After

current.link = newNode
The node has been added to the list although
it might appear out of place in this diagram.

"Cheatem"

"and"

head
"Duey"

"Howe"
null

newNode

current

Before

Chapter 10 Java: an Introduction to Computer Science & Programming - Walter Savitch 29

Adding a Node

After creating the node, the two statements used to add the
node to the list are:

newNode.link = current.link;
current.link = newNode;

What would happen if these two steps were done in reverse
order?

Chapter 10 Java: an Introduction to Computer Science & Programming - Walter Savitch 30

Deleting a Node
Step 1

"Cheatem"

previous
"Duey"

current

Before

"Cheatem"

previous
"Duey"

"Howe"
null

"Howe"
null

newNode

current

After

previous.link = current.link
What should be done next?

"and" "and"
This node will
be removed
from the list.

Chapter 10 Java: an Introduction to Computer Science & Programming - Walter Savitch 31

Deleting a Node
Step 2

current = current.link
The node has been deleted from the list
although it is still shown in this picture.

"Cheatem"

previous
"Duey"

"Howe"
null

newNode

current

After

"and"

"Cheatem"

previous
"Duey"

"Howe"
null

newNode

current

Before

"and"

This node is
not accessible
from the head
of the list.

Chapter 10 Java: an Introduction to Computer Science & Programming - Walter Savitch 32

"Cheatem"

previous
"Duey"

"Howe"
null

newNode

current

After

"and"

This node is
not accessible
from the head
of the list.

FAQ: What Happens
to a Deleted Node?

The Cheatem node has been
deleted from the list.
If there are no other references
to the deleted node, the
storage should be released for
other uses.
» Some programming

languages make the
programmer responsible for
garbage collection.

» Java provides automatic
garbage collection.
Storage used by the Cheatem node will be available for other
uses without the programmer having to do anything.

Chapter 10 Java: an Introduction to Computer Science & Programming - Walter Savitch 33

A Doubly Linked List

A doubly linked list allows the program to move backward as
well as forward in the list.
The beginning of the node class for a doubly-linked list would
look something like this:
private class ListNode
{

private Object data
private ListNode next;
private ListNode previous;

null null

Declaring the data
reference as class Object
allows any kind of data to
be stored in the list.

Chapter 10 Java: an Introduction to Computer Science & Programming - Walter Savitch 34

Other Linked Data Structures
tree data structure
» each node leads to multiple other nodes

binary tree
» each node leads to at most two other nodes

root—top node of tree
» normally keep a reference to root, as for head node of list

null null null null null null

null

root
node

Chapter 10 Java: an Introduction to Computer Science & Programming - Walter Savitch 35

Summary

Vectors can be thought of as arrays that can grow in length as
needed during run time.
The base type of all vectors is Object.
Thus, vector elements can be of any class type, but not primitive
types.
A linked list is a data structure consisting of objects known as nodes,
such that each node can contain data, and each node has a
reference to the next node in the list.
You can make a linked list self-contained by making the node class
an inner class of the linked list class.
You can use an iterator to step through the elements of a collection.

