
The Journal of Systems & Software 198 (2023) 111588

S
a

b

c

w
m
2
h
s
o
P
t
b

r
(

p

h
0

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

What are the characteristics of highly-selected packages? A case study
on the npm ecosystem✩

uhaib Mujahid a,b,∗, Rabe Abdalkareem c, Emad Shihab a

Data-driven Analysis of Software (DAS) Lab, Concordia University, Montreal, Canada
Mozilla Corporation, Montreal, Canada
Department of Computer Science, Faculty of Science, Omar Al-Mukhtar University, Libya

a r t i c l e i n f o

Article history:
Received 23 March 2022
Received in revised form 2 December 2022
Accepted 5 December 2022
Available online 7 December 2022

Keywords:
highly-selected packages
Package quality
Software ecosystem
npm

a b s t r a c t

With the popularity of software ecosystems, the number of open source components (known as
packages) has grown rapidly. Identifying high-quality and well-maintained packages from a large pool
of packages to depend on is a basic and important problem, as it is beneficial for various applications,
such as package recommendation and package search. However, no systematic and comprehensive
work focuses on addressing this problem except in online discussions or informal literature and
interviews. To fill this gap, in this paper, we conducted a mixed qualitative and quantitative analysis to
understand how developers identify and select relevant open source packages. In particular, we started
by surveying 118 JavaScript developers from the npm ecosystem to qualitatively understand the factors
that make a package to be highly-selected within the npm ecosystem. The survey results showed
that JavaScript developers believe that highly-selected packages are well-documented, receive a high
number of stars on GitHub, have a large number of downloads, and do not suffer from vulnerabilities.
Then, we conducted an experiment to quantitatively validate the developers’ perception of the factors
that make a highly-selected package. In this analysis, we collected and mined historical data from
2,527 packages divided into highly-selected and not highly-selected packages. For each package in the
dataset, we collected quantitative data to present the factors studied in the developers’ survey. Next,
we used regression analysis to quantitatively investigate which of the studied factors are the most
important. Our regression analysis complements our survey results about highly-selected packages. In
particular, the results showed that highly-selected packages tend to be correlated by the number of
downloads, stars, and how large the package’s readme file is.

© 2022 Elsevier Inc. All rights reserved.
1. Introduction

A software ecosystem is a collection of interdependent soft-
are packages that are developed and evolve together in a com-
on technological platform (e.g., Node.js) (Serebrenik and Mens,
015). In recent years, the proliferation of software ecosystems
as led to a vast and rapid growth of the number of open-
ource packages.1 For example, as of January 2022, there were
ver a million packages available on the registry of the Node
ackage Manager (npm), one of the largest software ecosys-
ems. Furthermore, the number of packages grew by around 60%
etween January 2019 and January 2022 (DeBill, 2022). With

✩ Editor: Fabio Palomba.
∗ Corresponding author.

E-mail addresses: s_mujahi@encs.concordia.ca (S. Mujahid),
abe.abdalkareem@omu.edu.ly (R. Abdalkareem), emad.shihab@concordia.ca
E. Shihab).
1 In this paper, we use the term package referring to open source components
ublished on software ecosystems.
ttps://doi.org/10.1016/j.jss.2022.111588
164-1212/© 2022 Elsevier Inc. All rights reserved.
the massive number of packages out there, finding the right
package to use can be challenging, considering that many pack-
ages provide similar functionalities. However, there are some
packages that stand out and experience high interest from de-
velopers. We believe that understanding the characteristics of
these highly-selected packages is crucial since it helps develop-
ers answer the essential question: which packages a developer
should select among many existing options. In addition, such
understanding can help to improve the performance of package
recommendation systems (Zheng et al., 2011; de la Mora and
Nadi, 2018; StackOverflow, 2017; Semeteys, 2008) and enhance
the user experience of package search engines (Abdellatif et al.,
2020; StackOverflow, 2017; Cruz and Duarte, 2018). Further-
more, for package developers, understanding the characteristics
of highly-selected packages can be helpful for various purposes,
such as improving their packages to meet the requirements and
experiences that users look for, acquiring the community’s at-
tention, and eventually increasing the package usage and overall
reputation. Those potential implications of understanding the

factors of highly-selected motivate use to study them.

https://doi.org/10.1016/j.jss.2022.111588
https://www.elsevier.com/locate/jss
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2022.111588&domain=pdf
mailto:s_mujahi@encs.concordia.ca
mailto:rabe.abdalkareem@omu.edu.ly
mailto:emad.shihab@concordia.ca
https://doi.org/10.1016/j.jss.2022.111588


S. Mujahid, R. Abdalkareem and E. Shihab The Journal of Systems & Software 198 (2023) 111588

s
s
a
q
u

t
2
s
e
p
(
p
s
t
i

Fig. 1. An overview of our study design.
t
t
G
f
c
F
v
s
t
t
c

S
S
t
p
i
m
c

2

d
o

i
e
o
e
a
u
s
a

Fig. 2. Example of a dependency graph. The packages B, C and D are direct
dependents of package A. The packages E and F are direct dependencies of
package A.

Previous studies examined different aspects of packages pub-
lished in software ecosystems, such as centrality and popular-
ity (Abdalkareem et al., 2020; Abdellatif et al., 2020; Larios Vargas
et al., 2020; Qiu et al., 2018; Mujahid et al., 2021), and a few
examined the selection factors of relevant packages (Larios Vargas
et al., 2020; Jadhav and Sonar, 2009). The main limitation of prior
works is that they were based on a purely quantitative analysis
of popular packages or only interviewing developers in a specific
industrial context. That said, understanding the characteristics of
highly-selected packages is still the subject of much discussion
and refinement. This is because several facts include personality
aspects and examining different data modalities from several
sources, and a developer is typically a familiar user of a specific
package. Thus, in this paper, we divided the study into two
parts — qualitative and quantitative (John et al., 2000). Fig. 1
shows an overview of our study design. In the first part (referred
from now on as qualitative analysis), we conducted a user study
urvey that involves 118 JavaScript developers. We asked our
urvey participants to fill in a form composed of 17 statements
bout factors they use when selecting npm packages. Then, we
ualitatively analyzed the developers answers to the 17 questions
sing descriptive statistics.
In order to provide validation to the findings of the quali-

ative analysis, we conducted quantitative analysis on a set of
527 npm packages grouped into highly-selected and not highly-
elected packages. Similar to prior work (Bavota et al., 2015; Lee
t al., 2020; Tian et al., 2015), we estimated the highly-selected
ackages based on the number of direct dependent packages
illustrated in Fig. 2). Then, we mined and analyzed the selected
ackages and collected quantitative data to present the factors
tudied in our survey. Next, we used regression analysis to quan-
itatively investigate which of the studied factors are the most
mportant for developers to select a package to use.
 p

2

The survey results showed that JavaScript developers believe
hat when selecting a package to use, they look for packages
hat are: well-documented, receive a high number of stars on
itHub, have a large number of downloads, and do not suffer
rom security vulnerabilities. Moreover, our regression analysis
omplemented our survey results about highly-selected packages.
or example, our developers’ survey and regression analysis re-
ealed that developers select packages with a high number of
tars and downloads. Also, it described the differences between
he developers’ perceptions about highly-selected packages and
heir characteristics. In general, our work makes the following key
ontributions:

• We performed a mixed qualitative and quantitative analysis
to investigate the characteristics of highly-selected pack-
ages on the npm ecosystem. We presented our results from
surveying 118 JavaScript developers and validated the sur-
vey results through a quantitative analysis of 2427 npm
packages.

• We identified the most important factors that packages’
users should consider when selecting an npm package to use
in their projects.

• We also provided practical implications for packages’ main-
tainers, the npm ecosystem’s maintainers, and researchers
and outline future research avenues.

• To support replicating our work and future research, we
make our dataset publicly available (Mujahid et al., 2022).

The remainder of this paper is structured as follows. In
ection 2, we present the work that is related to our study.
ection 3 describes the study design and presents the results of
he qualitative analysis. Section 4 describes the study design and
resents the results of the quantitative analysis. We discuss the
mplications of our study in Section 5. We discuss the threats that
ay affect the validity of the results in Section 6. Finally, Section 7
oncludes our work.

. Related work

The increasing trend of depending on software ecosystems by
evelopers has motivated researchers to understand the devel-
per’s perspective about using third-party packages.
Haefliger et al. (2008) studied the reuse pattern and practices

n open source applications. Their study showed that experi-
nced developers reuse more code than less experienced devel-
pers. Abdalkareem et al. (2017), Abdalkareem (2017) studied an
merging code reuse practice in the form of lightweight pack-
ges in the software ecosystem. Their study was conducted to
nderstand why developers use trivial packages. Their results
howed that these packages are prevalent in PyPI (Python Pack-
ge Index), but 70.3% of the developers considered using these
ackages is a bad practice. In addition, Xu et al. (2019) studied the



S. Mujahid, R. Abdalkareem and E. Shihab The Journal of Systems & Software 198 (2023) 111588

r
a
r
b
u
w
w
t
w
o
r
a
t
g
t

w
t
h
s
o
r
r

o
s
t
t
e
t
v
n
t
s
o
e
i
t

d
g
t
(
s
w
B
t
h
A
o
o
a
t
a
s
d

o
w
o
T
r
s
q

m
n

eason behind the reusing and re-implementing of external pack-
ges in software applications. They found that developers often
eplace their self-implemented methods with external libraries
ecause they were initially unaware of the library or it was
navailable back then. Later on, when they became aware of a
ell-maintained and tested package, they replace their own code
ith that package. Although developers preferred to reuse code
han re-implement it, they replaced an external heavy package
ith their implementation when they believed that they were
nly using a small part of its functionalities or if it became dep-
ecated. Haenni et al. (2013) conducted a survey with developers
bout their decision-making while introducing a dependency to
heir applications. Surprisingly, the study found that developers
enerally do not apply rationale while selecting the packages;
hey used any package that accomplishes the required tasks.

Some other work focused on the health of open source soft-
are ecosystems. For example, Zerouali et al. (2019a) studied
he impact of outdated and vulnerable Javascript packages and
ighlighted the risk of potential security vulnerabilities. Another
tudy by Decan et al. (2017) performed an empirical comparison
f dependency issues in open source software ecosystems. Their
esults motivate the need for improvements to handle issues
elated to adopting and updating package dependencies.

Other work also focused on examining the popularity growth
f packages within an ecosystem. For example, Qiu et al. (2018)
tudied the growth of popular npm package. Their finding showed
hat lifetime, number of dependents, and added new functionali-
ies play significant roles in popularity growth. Chatzidimitriou
t al. (2019) used network analysis and information retrieval
echniques to study the dependencies that co-occur in the de-
elopment of npm packages. Then, they used the constructed
etwork to identify the communities that have been evolved as
he main drivers for npm’s exponential growth. Their findings
howed that several clusters of packages can be identified. Zer-
uali et al. (2019b) examined a large number of npm packages by
xtracting nine popularity metrics. They focused on understand-
ng the relationship between the popularity metrics. They found
hat the studied popularity metrics were not strongly correlated.

Other work focused on understanding the process used by
evelopers to select packages and attempted to provide some
uidelines. Pano et al. (2018) focused on understanding factors
hat developers look for when selecting a JavaScript framework
e.g., React). Based on interviewing 18 decision-makers, they ob-
erved a list of factors when choosing a new JavaScript frame-
ork, including the community’s size behind the framework. del
ianco et al. (2011) provided a list of factors that influence the
rustworthiness of open source software components. Their list
ad five categories, including quality and economic categories.
lso, in their study, Hauge et al. (2009) observed that many
rganizations apply informal selection process based on previ-
us experience, recommendations from experts, and information
vailable on the Internet. Franch and Carvallo (2003) investigated
o adapt the ISO quality model and assign metrics to be used
s a measure for selecting software components. Their study
uggested that relationships between quality entities need to
escribe explicitly.
The main goal of our study is to examine the characteristics

f highly-selected packages within the npm ecosystem. In many
ays, our study is complementary to prior work since we focus
n understanding factors that make a package highly-selected.
hat said, our study is one of the only studies to use mixed
esearch methods, which provide us with more complete and
ynergistic utilization of data than any separate quantitative and
ualitative data collection and analysis.
3

3. Qualitative analysis

This analysis aims to survey JavaScript developers to under-
stand the characteristics of packages that JavaScript developers
look for when selecting an npm package to use. In this study, we
surveyed 118 JavaScript developers.

3.1. Study design

This section presents our survey design, participant recruit-
ment, and data analysis methods.

3.1.1. Survey design
To understand which factors developers look for when se-

lecting an npm package, we designed a survey containing three
main parts. The first part contained questions related to the
background of the participants. We asked these questions to
ensure that our survey participants have sufficient experience in
software development and in selecting and using npm packages.
In this part, we asked the following questions:

1. How would you best describe yourself? A question with the
following choices and the last choice is a free-text form:
Full-time, Part-time, Free-lancer, and Other.

2. For how long have you been developing software? A se-
lection question with the following options: <1 year, 1–3,
4–5, more than 5 years.

3. How many years of JavaScript development experience do
you have? A selection question with the following options:
<1 year, 1–3, 4–5, more than 5 years.

4. How many years of experience do you have using the Node
Package Manager (npm)? A selection question with the
following options: <1 year, 1–3, 4–5, more than 5 years.

5. How often do you search for npm packages? A question
with the following options: Never, Rarely (e.g., once a year),
Sometimes (e.g., once a month), Often (e.g., once a week),
Very often (e.g., everyday).

6. Which search engine interface do you use to find relevant
npm packages? A question with the following multiple
choices and the last choice is a free-text form: Online
search on the npm web page (i.e., npms), Command line
search, Google or other general web search engines, and
Other.

In the second part of the survey, we had a list of state-
ents that present seventeen factors that can affect selecting
pm packages. In particular, we asked the question ‘‘How im-

portant are the following factors when selecting a relevant npm
package?’’ Table 1 reports the seventeen factors statements. For
each statement, the table presents each factor’s definition and
the rationale behind asking about it. In the survey, we asked
participants to rate these statements using a Likert-scale ranges
from 1 = not important to 5 = very important (Oppenheim,
1992). We chose to investigate these factors for two main rea-
sons. First, our literature review (Mujahid, 2021) indicated that
these factors are known to impact the use and selection of npm
packages. Second, we focused on studying factors that developers
can easily observe through examining the package source code or
its software repository, e.g., from the GitHub website.

In the last part of our survey, we asked the participants an
open-ended question about whether they had any additional
comments or other factors that they look for when they select a
package. We asked this open-ended question to give our survey
participants maximum flexibility to express their opinion and ex-
perience with the selection of npm packages, which also complies
with the survey design guidelines (Dillman, 2011).



S. Mujahid, R. Abdalkareem and E. Shihab The Journal of Systems & Software 198 (2023) 111588

t
m
s
q

3

o
J
n
p
v
c
s
w
a
i
T
n

Table 1
List of factors used in selecting a packages from the npm ecosystem.
Factor The survey statements Rationale

Forks The number of forks for the
package’s source code on GitHub.

The number of forks that packages receive indicates that the packages are active, and
many developers are contributing to these packages (Gousios et al., 2014).

Watchers The number of watchers of the
package’s GitHub repository.

Developers can watch package repositories on GitHub so they can receive notifications
about package development activities (Sheoran et al., 2014). The higher the number of
watchers on a package indicates that the package is well-known and used by many
developers. We consider that packages with an increased number of watchers refer to
highly-selected packages.

Contributors The number of contributors to a
package’s GitHub repository.

The higher the number of contributors to a package repository shows that the package is
more likely to attract developers (Yamashita et al., 2016).

Downloads The number of downloads the
package has.

The packages that have a higher number of downloads indicate that the packages are
highly selected and used (Abdellatif et al., 2020).

Stars The number of stars of a packages on
GitHub.

A high number of stars that a npm package receives on GitHub could indicate to
developers that the package is more likely popular, which may attract them to use the
package (Borges and Valente, 2018; Dabbish et al., 2012).

Dependencies The number of dependencies the
npm package has.

A larger number of dependencies could not attract more developers to use the packages
since prior work shows that packages with a more considerable dependency may lead to
dependency hell (Abdalkareem et al., 2017).

License Wether the npm package has a
permissive or restrictive software
license.

When evaluating a package, it is also essential to consider non-functional requirements,
such as the license. Using a package with no license or with a license that does not match
the developer organization’s usage and policies can quickly become a problem (Meloca
et al., 2018; Team, 2019).

Documentation Whether the npm package repository
has online documentation, e.g.
README file.

The package that is well-documented and has an organized README file is more likely to
be used by many developers (Begel et al., 2013; Hata et al., 2015).

Test code Whether the npm package has test
cases written.

Packages that have test code written are more likely to attract developers to use them
since it indicates that the packages are well-tested (Abdalkareem et al., 2017).

Build status The build status of the npm package
for example from Travis CI.

The presence of a high number of failed builds in the package repository may lead
developers not to use the package (Abdellatif et al., 2020).

Vulnerabilities If the npm package depends on
vulnerable dependencies.

If a npm package is affected by vulnerabilities, it may concern developers and deter them
from selecting and using the package (Abdellatif et al., 2020; Abdalkareem et al., 2020).

Badges If the package repository has badges. The presence of badges in the package repository indicates that the package is of good
quality that attracts developers to use the package (Trockman et al., 2018).

Website If the package has a custom website. The presence of a website for the package indicates that the package is supported by an
organization, which is usually a signal that there is more than one maintainers or major
contributor (i.e., there is support by an organization) (Qiu et al., 2019).

Releases The release frequency of the package. A package with several releases indicates that the package is well maintained.

Closed issues The number of closed issues in the
package’s repository.

The number of closed issues indicates how well-maintained the package is and reveals
how maintainers of the package respond to issues. Packages with a large percentage of
closed issues attract more developers to use the package (Abdellatif et al., 2020).

Commit frequency The commit frequency in the package
repository.

Developers mainly look for well-maintained and active packages to use. Prior work also
shows that the number of commits a package receives can give a good indication of how
active the package is, which results in high selection (Abdellatif et al., 2020).

Usage The number of projects using the
package on GitHub.

Packages that are used by many other developers are more likely to attract more
developers to use (Abdalkareem et al., 2020).
Once we had our survey questions, we shared the survey with
hree of our colleagues who are experts in JavaScript program-
ing and using packages from npm. We performed this pilot
urvey to discover potential misunderstandings or unexpected
uestions early on and improve our survey (Dillman, 2011).

.1.2. Participant recruitment
To identify the participants in our survey, we needed to reach

ut to developers who are the experts in selecting and using
avaScript packages. Thus, we resorted to the public registry of
pm (npm, 2017). The registry contains information on each
ackage published on npm, including information about the de-
elopers maintaining the package. We used the npm registry to
ollect a list of emails and names of JavaScript developers who
elected and used a sufficient number of npm packages. To do so,
e analyzed the npm registry, and for each package, we extracted
nd counted the number of its dependencies and the contacts
nformation of the developers who are maintaining the package.
hen, we selected the top thousand developers based on the
umber of their distinct package dependencies. It is important
4

to note that we selected developers who use a large number of
packages since they likely went through the process of selecting
npm packages several times.

Once we identified this initial sample of developers, we ex-
amined all the names and email addresses of the identified de-
velopers to exclude duplicated emails and names. Based on this
step, we identified 931 unique JavaScript developers. Next, we
sent email invitations of our survey to the 931 unique developers.
However, since some of the emails were returned for several
reasons (e.g., invalid emails), we successfully reached 895 devel-
opers. In the end, we received 118 responses for our survey after
having the survey available online for ten days. This number of
responses translates to a 13.18% response rate, which is compa-
rable to the response rate reported in other software engineering
surveys (Smith et al., 2013).

3.1.3. Survey participants
Table 2 shows the positions of the participants, the develop-

ment experience of the participants, the JavaScript experience of
the participants, and their experiences in using npm ecosystem.



S. Mujahid, R. Abdalkareem and E. Shihab The Journal of Systems & Software 198 (2023) 111588
Table 2
Participants’ position, and their experience in software development, JavaScript, and use of the npm package manager platform.
Developers’
position

Occurrences Development
experience

Occurrences Experience
in JavaScript

Occurrences Experience in
using npm

Occurrences

Full-time 84 <1 2 <1 0 <1 0
Part-time 9 1–3 21 1–3 25 1–3 59
Freelancer 15 4–5 15 4–5 37 4–5 20
Other 10 >5 80 >5 56 >5 39
Fig. 3. Survey responses regarding how often our survey participants search for
npm packages. In our survey, the question has the following answers: never,
rarely (e.g., once a year), sometimes (e.g., once a month), often (e.g., once a
week), very often (e.g., everyday).

As for the participants’ positions, 84 participants identified
themselves as full-time developers and 9 participants as part-
time developers. Interestingly, 15 participants identified them-
selves as freelancers. The remaining ten participants identified
themselves as having other positions not listed in the ques-
tion, including open-source developers, IT specialists, and Ph.D.
students.

Of the 118 participants in our survey, 80 participants have
more than 5 years of development experience and 15 responses
have between 4 to 5 years. Also, 21 participants claimed to have
between 1 to 3 years of experience, and only two participants
have less than one year of development experience. In addi-
tion, 56 participants have more than 5 years of experience in
JavaScript, 37 participants have experience in using JavaScript be-
tween 4 to 5 years, and 25 participants claimed to have between
1 to 3 years of experience.

We also asked our survey participants about their experience
in using packages from the npm ecosystem. The majority of our
survey participants indicated that they have more than one year
of experience using npm. Specifically, 39 participants have more
than 5 years of experience using npm and 20 responses have
between 4 to 5 years. Finally, 59 participants claimed to have
between 1 to 3 years of experience.

In addition, to inquire our survey participants about their
development experience, we asked them how often they search
for npm packages and which search engine they used to perform
their search. Fig. 3 reports the result related to participants’
habits about how often they search for npm packages. Of the
118 participants, 15% indicated that they search for npm packages
very often, and 42% indicated that they often search for new npm
packages. Almost all the remaining participants (38%) indicated
they sometimes look for npm packages. Interestingly, only 4% of
our survey participants reported that they rarely do search for
packages, and no one indicated that she/he never looks for npm
packages. Our survey participants also reported that they mainly
use web search engines (e.g., Google) when they search for npm
packages to use. Interestingly, only 20% of them indicated they

use other search engines.

5

Overall, the background information about the developers
who participated in our survey shows that they are experi-
enced in JavaScript and selecting npm packages, which gives us
confidence in the finding based on their experiences.

3.1.4. Analysis method
To analyze our survey responses about the different factors

used to select npm packages, we first showed the distribution of
the Likert-scale for each factor, which ranges from 1 = not im-
portant to 5 = very important (Oppenheim, 1992). Second, for all
responses of each factor, we calculated values of the median, the
interquartile range (IQR), the mean, and the standard deviation
(SD).

In addition, to analyze the free-text answers from the open-
ended question related to developers’ opinions, we performed
an iterative coding process to understand whether the responses
indicated any other factors that we did not consider in our sur-
vey (Rea and Parker, 2014). The first two authors iteratively
developed a set of codes based on an inductive analysis ap-
proach (Seaman, 1999). In total, the authors manually examined
30 responses from the developers who answered the optional
open-ended question. However, based on this analysis, we did not
find any new factors that we did not consider in our survey. In
fact, all the responses to this open-ended question supported the
developers’ opinions about the studied factors.

3.2. Study results

Table 3 shows the factors’ name and the 5-point Likert-scale
distribution for each factor from our survey responses. The table
also shows the scale’s median alongside the value of IQR and
mean alongside SD. Overall, based on our survey results, we can
divide the factors used by developers when selecting packages
into three groups: (1) Mostly important factors (e.g., documen-
tation, downloads, and stars), (2) somewhat important factors
(e.g., license and testing), and (3) mostly unimportant factors
(e.g., watchers and badges). In the following, we discuss the
developers’ perceptions in more detail:

Mostly important factors: On a 5-point scale, participants
indicated that the most important factor when looking for an npm
package to select is how well a package is documented. Table 3
shows that the majority 93% (median = 5.00 and mean = 4.65)
of the responses agree with the statement that the GitHub repos-
itory of a npm package that they are examining to select should
have some form of documentation. In addition, to confirm this
statement, developer P40 stated that ‘‘Sample code documenta-
tion on its usage’’ are important factors when selecting an npm
package to use.

The second most important factor reported by our survey
participants is the number of downloads that the packages have.
More than 85% (median = 4.5 and mean = 4.30 on the 5-point
scale) of the responses said that they considered the number of
downloads a package has when searching for a package to use.
These results give a high indication that developers still consider
the download count of packages as a sign of the community
interest, which means that the package is a good option to select.



S. Mujahid, R. Abdalkareem and E. Shihab The Journal of Systems & Software 198 (2023) 111588

o
O
t
w
s

t
a
p
l
d

Table 3
Survey results of the factors used in selecting a package from the npm
ecosystem.

Our survey showed that developers also look for the number
f stars the packages have when searching for a package to select.
n the 5-points scale, developers believed that the reputation of
he packages in terms of stars count is an important indicator
ith median = 4.0 and mean = 3.97. For example, developer P74
tated that ‘‘reputation/popularity’’ are the most important factors
when selecting an npm package to use.

The fourth most important factor developers consider when
searching for a new npm package to use is that the packages
do not depend on vulnerable code. On a 5-point scale, 62% of
the developers saw vulnerabilities as an essential factor when
finding and selecting relevant npm packages. Furthermore, some
developers in our survey emphasized the essentiality of this fac-
tor, participant P58 said ‘‘... not dependent on other out of date or
vulnerable packages’’. Also, participant P45 stated that they look
for packages that are free of vulnerable code and the maintainers
of the packages use tools to scan for vulnerabilities such as Snyk
and dependabot tools.

Somewhat important factors: Our survey also revealed that
here are some other factors that developers did not have an
greement on whether they are essential when they search for
ackages to select or not. We found that factors such as re-
ease (median = 4.0 and mean = 3.48), commits frequency (me-
ian = 3.0 and mean = 3.33), and test code (median = 3.0 and

mean = 3.14) do not have a consistent agreement amongst the
participants in our survey. However, some participants explicitly
highlighted the importance of some of these factors, such as
developer P69, who said ‘‘examining the package repository and
see the recent and historical activity/commits/updates would help
making the decision’’. Another developer, P1 explained that ‘‘. . . the
test coverage status is useful, but can be verified manually in the
code when deciding to use the package. The last date a commit
was made is very important. The more recent the better. The last
date a release was made is very important. The more recent the
better’’. In addition, we observed from Table 3 that developers
in our survey did not have a consistent agreement about factors
such as license and number of dependent applications, number of
dependencies that the package uses, the number of closed issues,
and the number of contributors, which have, on a 5-point scale,
values with a mean of 3.26, 3.19, 3.12, and 3.03, respectively.
6

Mostly unimportant factors: The other interesting group of
the studied factors that developers tend not to consider when
examining an npm package to use are: forks, badges, watchers,
website, and build status. Our analysis showed that these factors
received median values between 2.0 and 3.0 and mean values
between 2.12 and 2.89 on a 5-point scale. However, only one
developer from our survey supported the idea that examining the
build status is essential when selecting a package to use and said
P1 ‘‘The build status is important no matter if it comes from Travis
CI or other providers ...’’.

Finally, we observed that developers mentioned a few other
factors when looking for npm packages. Our survey participants
indicated that if there is a big software company that supports
the package. For example, developers P39 said ‘‘The source of the
package, if it is by a company that actively supports open source and
maintains their open source packages (ex: Facebook, Formidable labs,
Infinite Red), brings more points’’. Also, another participant stated
the same, P11 ‘‘Private support for big companies in open source
projects or libs (angular-google, react-facebook, etc.) that means the
package usually follow good practices, test, linter, ci, etc, and the
team that maintains the package is really good’’.

In addition, two other developers in our survey indicated that
support of community discussions about the packages matters.
For example, P94 mentions ‘‘Whether the package is actively main-
tained by developers well known and reputed in the community &
whether the package has good typescript support’’ and P60 said ‘‘If
the library is supported with an online community where usage
is discussed’’. Another developer, P20 stated ‘‘References on other
professional webpages about the package’’.

In summary, JavaScript developers have access to a wealth of
information about a large number of npm packages that can
be used when deciding which packages to select. Our survey
shows that developers mainly consider packages that are
well-documented, popular, and do not suffer from security
vulnerabilities. Moreover, when we conducted our survey,
among the 118 respondents, 73 (62%) provided their emails
and showed interest in our findings. This indicates the strong
relevance and importance of the findings to the practitioners
and the overall JavaScript development community.

4. Quantitative analysis

The goal of this analysis is to triangulate our qualitative find-
ings. In particular, we wanted to quantitatively validate the de-
velopers’ perception about the factors that highly-selected npm
packages possess. In this analysis, we examined 2592 npm pack-
ages divided into highly-selected and not highly-selected pack-
ages. For each package in our dataset, we collected quantitative
data to present the factors studied in our survey. Then, we used
regression analysis to quantitatively investigate which of the
studied factors are the most important.

4.1. Study design

In this section, we described our methodology of collecting
a dataset of highly-selected and not highly-selected npm pack-
ages. We also described how we collected the studied factors,
which served as the dependent variables in our study. Finally, we
presented our analysis method and steps.



S. Mujahid, R. Abdalkareem and E. Shihab The Journal of Systems & Software 198 (2023) 111588

4

p
o
s
t
f
n
w
e
p
n
w
p
A
t
i

o
f
d
o
s
c
d
o
a
s
o
w
n
o
g
t
s
o
b
b
n
w
t
a
d
s

p
m
t

Fig. 4. A histogram for the used npm packages.
.1.1. Data collection
To quantitatively examine the factors that make some npm

ackages highly-selected, we wanted to have a sufficient number
f packages that present both highly-selected and not highly-
elected packages. To do so, we resorted to study packages from
he npm ecosystem. We started by retrieving the metadata in-
ormation of all the npm packages that are published on the
pm ecosystem. In particular, we wrote a crawler to interact
ith the npm registry and download the package.json file of
very npm package (npm, 2017). It is important to note that the
ackage.json contains all the package information, including the
ames of other packages that the package depends on them. Once
e have the package.json, we started recursively analyzing the
ackage.json file of every package to extract its dependencies.
fter that, for each package in the npm ecosystem, we counted
he number of other packages that are listed as dependencies,
.e., the number of dependent packages.

It is important to note that we chose to use the number
f dependent packages as a proxy of highly-selected packages
rom the npm ecosystem over other measurements, particularly
ownload count, for two main reasons. First, the npm provides
nly an accumulated download count over time, which does not
how the current stats of the package. Second, the download
ount that npm provides could include crawlers and downloads
ue to transitive dependencies. In addition, we used the number
f dependent packages to distinguish between highly-selected
nd not highly-selected packages to quantitatively examine the
tudied factors’ impact without being biased by the developers’
pinions in the qualitative analysis. Furthermore, in our process,
e considered only the direct dependent packages from the
pm registry and avoided including dependent applications from
pen-source hosting services like GitHub. We did this since our
oal is to proxy how many times a developer went through
he process of selecting a package and decided to select the
ubject package. Moreover, platforms like GitHub hosts millions
f applications created using predefined project templates or
ootstrapping tools. For example, the tool Create React App alone
ootstrapped millions public applications on GitHub, which may
ot be completed. Considering such applications from GitHub
ill amplify the decision taken by the creators of such tools or
emplates to overtake the decisions of millions of developers. In
ddition, we did not consider the number of transitive depen-
ents because it does not reflect howmany times developers have
elected a package.
In total, we analyzed the package.json file of 1,423,956 npm

ackages. After that, we chose to study 6924 packages that have
ore than 100 dependent packages, i.e., the number of packages

hat depend on the selected packages. We decided to study npm
7

packages that have more than 100 dependent packages for two
main reasons. First, we found that prior work indicated that
npm ecosystem has many packages that are not used, e.g., toy
packages (e.g., Zerouali et al., 2019b; Abdalkareem et al., 2017).
Thus, selecting packages with more than 100 direct dependent
packages eliminated incompetent packages. Second, since we
wanted to examine highly-selected npm packages, we focused on
packages that can potentially be used and appear as an option
for developers when searching for an npm package to use, for
example, packages that are widely adopted by other packages.
Moreover, we selected this threshold after examining the distri-
bution of the number of dependent packages across all packages
in the npm ecosystem.

Next, we sorted the selected npm packages based on their
number of dependent packages. Fig. 4 presents the distribution of
the number of dependent packages. We considered the top 20%
based on the number of dependent packages as highly-selected
packages and the bottom 20% as not highly-selected packages.
We resorted to using these thresholds to have an essential dis-
tinction between the two samples and eliminate the gray area
between them. Also, prior studies used a similar sampling tech-
nique (Bavota et al., 2015; Lee et al., 2020; Tian et al., 2015). In the
end, we had 1385 highly-selected packages and 1385 not highly-
selected packages. We used these packages in our quantitative
analysis.

4.1.2. Package usage factors
Since we wanted to use regression analysis to understand the

most important factors in determining highly-selected packages,
we collected seventeen package factors. These factors are based
on the ones we studied in the qualitative analysis. Since these
factors present information that developers can observe by ex-
amining online sources about the npm packages, we resorted to
extracting these factors from four different sources: (1) GitHub,
which presents the package’s source code and other development
activities such as issues and commits, (2) npm, which contains
information about npm packages that developers can examine on
the npm website, (3) npms, which is the official search engine
used by the npm platform and provides metadata about the
packages, and (4) Snyk, which is a service that provides a dataset
of vulnerable npm packages and their versions. Table 4 shows
the factors with their names, value types, and descriptions. In
the following, we presented the detailed process of extracting the
studied factors from each data source:

GitHub: to collect the repository level factors, we used the
official GraphQL API (GitHub, 2021a) to collect the number of
forks, watchers, stars, and closed issues for each npm package
in our dataset. Since GraphQL API does not provide direct access



S. Mujahid, R. Abdalkareem and E. Shihab The Journal of Systems & Software 198 (2023) 111588

r
t
b
f
t
d
t
o

A
p
e
(
F
a
b
o

f
o
a

o
a
n
e

Table 4
List of factors values with their description.
Factor Type Description

Forks Number Forks count on GitHub
Watchers Number Watcher count on GitHub
Contributors Number Contributors count on GitHub
Downloads Number Downloads count from npm
Stars Number Stars count on GitHub
Dependencies Number Count of dependencies from package.json
License Boolean Whether has a permissive license
Documentation Number Size of README file
Test code Boolean Whether has a test script
Build status Number Percentage of failed jobs on last commit
Vulnerabilities Number Percentage of vulnerable versions
Badges Number Count of badges in the README file
Website Boolean Whether has a website
Releases Number Frequency of releases
Closed issues Number Count of closed issues on GitHub
Commit frequency Number Count of commits in the last year
Usage Number Count of dependent repositories on GitHub

to the number of contributors and build status of each package
repository, we used the GitHub REST API (GitHub, 2021b) to
count the number of contributors and the list of build status.
In addition, to measure the commits frequency, we cloned the
GitHub repositories for each of the studied packages and counted
the number of commits on all branches that were committed
in the latest year. Finally, we wrote a web crawler to collect
the package usage factor from the GitHub web interface, which
presents the number of other GitHub repositories that depend
on the package. Our crawler visited the GitHub repository page
for each package and read the number of dependents from the
dependency graph page on the GitHub website.

npm: from the official npm registry, we retrieved the list of
eleases for each package in our dataset. Then, we calculated
he release frequency factor by dividing the number of releases
y the number of days. Likewise, to present the dependencies
actor, we used the registry to count the number of dependencies
hat a package uses in its last version. Also, to calculate the
ocumentations factor for each package, we considered the size of
he readme file. We then measured its size in terms of the number
f its characters.
Also, we used both the npm registry and GitHub GraphQL

PI consecutively to retrieve the name of the license that a
ackage declares. We then classified the licenses into three cat-
gories: (1) permissive licenses, (2) weak copyleft licenses, and
3) strong copyleft licenses (Meloca et al., 2018; Team, 2019).
inally, we retrieved the list of badges for each package using
tool called detect-readme-badges.2 Once we had the list of
adges, we calculated the badges factor by counting the number
f badges used by the package.
npms: for the download factor, we used the official npm

search (npms.3) through its API to collect the number of down-
loads Next, we examined whether the package has a test code
to represent the test code factor by querying the npms API.
Additionally, we used the npms API to determine the website
actor. To do so, we extracted the website URL for each package in
ur dataset. Since some packages refer to their GitHub repository
s their main website, we filter out those URL addresses.
Snyk: to collect the vulnerabilities factor for each package in

ur dataset, we wrote a web crawler to collect the list of vulner-
ble releases from the Snyk web interface. Then, we divided the
umber of vulnerable releases by the total number of releases for
ach package to calculate the vulnerabilities factor.

2 https://www.npmjs.com/package/detect-readme-badges.
3 https://npms.io.
8

Table 4 shows the name, value type, and description of the
factors that we used to build our logistic regression models. Since
some packages do not have values for some factors, we filter out
these packages from our dataset. In the end, we were able to
collect factor values for 1332 highly-selected packages and 1195
not highly-selected packages.

4.2. Analysis method

To quantitatively examine the most impactful factors that
determine highly-selected packages, we used logistic regression
analysis. In our study, we examined the studied 2527 packages,
which we classified into highly-selected and not highly-selected
packages. We then built a logistic regression to model the de-
pendent variable, whether a package is highly-selected or not
highly-selected. In the following sections, we described the steps
used to build the logistic regression model.

4.2.1. Correlation analysis
Since the interpretation of the logistic regression model can

be affected by the highly correlated factors (Midi et al., 2010),
we first started by removing highly correlated factors in our
dataset. Thus, we computed the correlation among the inde-
pendent variables using Spearman’s rank correlation coefficient.
We used Spearman correlation because it is resilient to non-
normally distributed data, which is the case for our independent
variables (Kendall, 1938). We considered any pair of independent
variables that have a Spearman’s coefficient of more than 0.8
to be highly correlated. We selected the cutoff of 0.8 Spearman
since prior work suggested and used the same threshold for
software engineering data (e.g., Tian et al., 2015; Li et al., 2017).
Fig. 5 shows the hierarchical clustering based on the Spearman
correlation among our independent variables. From Fig. 5, we
observed that three factors are highly correlated, which are stars,
forks, and watchers. Finally, for these three factors, we only kept
the factor that is easy to interpret, which is the number of stars.
After this analysis, we ended up having fifteen unique variables.

4.2.2. Redundancy analysis
Once we removed the highly correlated factors, we also ap-

plied redundancy analysis to detect variables that do not add
information to the regression analysis (Harrell, 2015). Thus, we
removed them so they do not affect the interpretation of our lo-
gistic regression model. In our dataset, we did not find redundant
variables among the remaining fifteen factors.

4.2.3. Logistic regression
To build our logistic regression model, we followed steps

that have been applied in prior studies (e.g., Lee et al., 2020).
After identifying the factors that may impact the selection of an
npm package, we used logistic regression to model the highly-
selected packages. Since prior studies showed that using logistic
regression may be affected by the estimated regression coef-
ficient (Harrell, 2015; Lee et al., 2020), we trained our model
using several bootstrap iterations. Similar to prior work (e.g., Lee
et al., 2020), we created 100 rounds of bootstrap samples with a
replacement for training and testing sets that ensure the testing
samples were not included in the training set and vice versa.
Then, we built a logistic regression model on the created boot-
strap training samples, one for each iteration (i.e., 100 times) and
test it on the testing samples. In the end, we calculated the mean
of the sample statistics out of the 100 bootstrap samples.

4.2.4. Evaluating performance
Once we built our logistic regression model, we next wanted
to examine the performance of the built model. Hence, we used

https://www.npmjs.com/package/detect-readme-badges
https://npms.io


S. Mujahid, R. Abdalkareem and E. Shihab The Journal of Systems & Software 198 (2023) 111588

i
p
o
h
g

f
2
c
t
e
i
o
n
r
n

s
r
o
w
t
h
(
i
t
s

4

t

Fig. 5. The hierarchical clustering shows the factors that might impact the selection of npm packages. We apply the Spearman correlation test and use a cut-off
value of 0.8, to eliminate highly correlated factors. This analysis left us with fifteen factors that is used in the regression analysis.
h
s

v
i
a
v
v
a

the area under the receiver operating characteristic curve (ROC-
AUC), which is an evaluation measurement known for its sta-
tistical consistency (Bradley, 1997). An ROC-AUC value ranges
between 0 and 1, where 1 indicates perfect prediction results,
and 0 indicates completely wrong predictions. Accordingly, prior
studies showed that achieving a 0.5 ROC-AUC value indicates
that the model’s predictions are as good as random. However, a
ROC-AUC value equal to or more than 0.7 indicates an acceptable
model performance for software engineering datasets (Nam and
Kim, 2015; Lessmann et al., 2008; Yan et al., 2019). In our study,
the logistic regression model achieved an ROC-AUC value of 0.74.

4.2.5. Factors importance
To investigate which of the examined factors are the most

mpactful in our logistic regression modeling of highly-selected
ackages, we used the Wald χ2 maximum likelihood tests value
f the independent factors in our model (Harrell, 2015). The
igher the Wald χ2 statistics value of an independent factor, the
reater the probability that its impact is significant.
We also generated nomogram charts to present the studied

actors’ importance on our logistic regression model (Harrell,
015; Iasonos et al., 2008). Nomograms are easily explainable
harts that provide a way to explore the explanatory power of
he studied factors. Since Wald χ2 test provides us with only the
xplanatory power, we used the nomogram to show us the exact
nterpretation of how the variation in each factor influences the
utcome of the regression model. Furthermore, the Wald χ2 does
ot indicate whether the studied factors have positive or negative
oles in determining highly-selected packages or not, while the
omogram provides such information.
Fig. 6 shows the generated nomogram of the logistic regres-

ion model. The line against each factor in the figure presents the
ange of values for that factor. We used the points line at the top
f the figure to measure the volume of each factor contribution,
hile the total points line at the bottom of the figure presents
he total points generated by all the factors. In our analysis, the
igher the number of points assigned to a factor on the x-axis
e.g., the number of stars has 100 points), the larger its impact
s on the logistic regression model. Having a higher value on the
otal points line reflects that a package will be more likely to be
elected.

.3. Study results

Table 5 shows the values of the Wald χ2 and the p-value for
he selected fifteen factors that may impact the highly-selected
9

Table 5
The result of our logistic regression analysis for investigating the most important
factors.
Factors Wald χ2 p-value

Downloads 63.00 0.000 ***
Stars 24.21 0.000 ***
Closed issue 17.62 0.000 ***
Vulnerabilities 16.47 0.000 ***
Badges 12.21 0.001 ***
Documentation 11.61 0.001 ***
Dependencies 8.04 0.005 **
Build status 5.54 0.019 *
Test code 4.62 0.032 *
Contributors 4.41 0.036 *
Commits frequency 2.34 0.126
Release 2.32 0.127
License 1.68 0.196
Usage 1.15 0.283
Website 0.02 0.880

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1.

npm packages. Fig. 6 also shows the estimated effect of our
factors using nomogram analysis (Iasonos et al., 2008). Overall,
we observed that the regression analysis complemented the main
qualitative findings. However, it controverted with the impor-
tance of some factors.

From Table 5, we observed that the number of downloads
has the most explanatory power with a Wald χ2 value equal
to 63.00 when we modeled the probability of highly-selected
npm packages. The second most important factor in modeling
highly-selected packages is the number of stars a package has
(Wald χ2

= 24.21). Fig. 6 also shows that npm packages that
ave a high number of downloads and received a high number of
tars have a high chance to be highly-selected packages.
Our regression analysis also showed that documentation and

ulnerability factors have explanatory power as well. Interest-
ngly, developers reported these two factors in our survey to have
high impact when selecting npm packages. With a Wald χ2

alue equal to 16.47, packages that have a high percentage of
ulnerable versions have higher impact power and the same
pply for the size of the readme files with Wald χ2

= 11.61. In
addition, Fig. 6 confirms that documentation and vulnerabilities
have a positive contribution to the probability of a npm package
being highly-selected.

Interestingly, our regression analysis showed two of the stud-
ied factors that have an explanatory power when they are used
to model the probability of highly-selected npm packages, which



S. Mujahid, R. Abdalkareem and E. Shihab The Journal of Systems & Software 198 (2023) 111588

t

a
c
d
a
i
e
a
n
t

b
t
t
e

n
n
a
d
a
a
l
w
w
t
T
p
t

w
b
s
v
T
h
s

Fig. 6. The nomogram visually presents the impact of each of the studied factors in determining highly-selected npm packages. The logistic regression model used
o generate this nomogram achieved a median ROC-AUC of 0.74 on 100 out-of-sample bootstrap iterations.
re the number of badges that the package has and the number of
losed issues on Github. However, our survey results showed that
evelopers tend not to consider these factors when searching for
n npm package to use. Table 5 shows that the number of closed
ssues is the third most important factor with a Wald χ2 value
qual to 17.62 while the number of badges is placed fifth, having
value of Wald χ2 equal to 12.21. Furthermore, Fig. 6 shows the
umber of badges has a positive contribution with the probability
hat the package will be highly-selected packages.

In addition, our nomogram analysis shows that the num-
er of contributors as a factor has a negative contribution to
he probability of a package being highly-selected. In contrast,
he regression analysis showed that this factor has a modest
xplainable power (Wald χ2

= 4.41).
Overall, our analysis shows that there is a statistically sig-

ificant difference between the factors of highly-selected and
ot highly-selected packages. Therefore, the question naturally
rises here: do highly-selected packages provide functionalities
ifferent from not highly-selected packages? In particular, we
re interested in understanding if these highly-selected pack-
ges provide functionalities that not highly-selected packages
ack (e.g., packages providing functionalities related to working
ith arrays or strings). To this aim, we extracted the list of key-
ords provided by the publishers of the packages in our dataset
o describe the key functionalities that the packages provide.
hen, for the dataset of highly-selected and not highly-selected
ackages, we count the frequency of the keywords and present
hem as word clouds.

Fig. 7 reports the frequency of the keywords that developers
rote to describe their packages. In general, we observe that
oth word clouds contains similar keywords. For example, we
ee that highly-selected and not highly-selected packages pro-
ide test-related functionalities and CSS related functionalities.
hese analyses indicate that in high level, highly-selected and not
ighly-selected packages tend to perform functionalities from the
ame domains.
10
In summary, our quantitative analysis complemented devel-
opers’ perceptions about the factors that they look for when
selecting an npm package to use. In particular, our results
showed that highly-selected npm packages tend to possess
characteristics that include a high number of downloads,
stars, and a higher ratio of closed issues. Lastly, in contrast
to our qualitative analysis results, our regression analysis
showed that a higher number of badges is an essential
characteristic of highly-selected npm packages.

5. Discussion

Our study has many direct benefits for the ecosystem main-
tainers and the npm community, particularly package owners
and developers who use the npm packages. We discussed these
implications and benefits in the following.

The npm software ecosystemmaintainers should pay atten-
tion to certain aspects of the packages when building pack-
age search or recommendation tools. Several package search
tools have been proposed and deployed, which can be classi-
fied into two main categories. The first category based on key-
word search (npm-Documentation, 2017; Temple, 2017; Kashcha,
2017). These tools are limited since they do not take into consid-
eration the quality aspect of the packages. Tools from the second
category provide package search while considering some quality
aspects of the packages, e.g., the npms tool (Cruz and Duarte,
2018). While npms is the official search tool used by the official
npm website, it has some limitations. The main limitation of npms
is that it assigns different weights of the used aspects without
a clear justification, which negatively affects the quality of the
search engine (Abdellatif et al., 2020). Our examination of npms’
source code and documentation shows that npms arbitrarily gives
weights to certain aspects when ranking the packages. We rec-
ommend that the npm ecosystem could use our results to build



S. Mujahid, R. Abdalkareem and E. Shihab The Journal of Systems & Software 198 (2023) 111588

m
i
c
d

i
o
t
e
o
h
c
a
t
2
b
c
p
t

s
i
r
a
a
p
m
p
f
t
a

t
a
t
m
t
C
t
f
t
r
s

6

o

Fig. 7. Word cloud of keywords description for highly-selected packages and not highly-selected packages.
ore robust search tools. For example, the npm maintainers can
ntegrate our rank of the important factors to weigh each factor’s
ontribution when used in a search tool, which they are based on
evelopers’ perceptions.
Several package characteristics should be carefully exam-

ned by developers when choosing an npm package to depend
n in their projects. As mentioned earlier, our results indicated
hat highly-selected packages possess specific characteristics. For
xample, our regression analysis results showed that the number
f closed issues in the package repository is commonly related to
ighly-selected packages. We believe that JavaScript developers
an use our results to build systematic guidelines for choosing
n npm package to use. In fact, there have been several attempts
o help developers create such a guideline (Franch and Carvallo,
003; Wasike, 2010; Semeteys, 2008). However, their main draw-
ack is that they focused on selecting packages in a specific
ontext or propose general guidelines to select open source com-
onents. In addition, they do not consider package characteristics
hat npm provide, such as the number of downloads.

To promote their packages, the owner of npm packages
hould provide clear indications of their packages’ character-
stics. Gaining more popularity within the software ecosystem
equires putting more effort into signaling the published pack-
ges’ quality. Overall, all the package factors that our qualitative
nd quantitative results highlighted are essential factors that
ackage owners can employ to attract more users. For example,
any responses indicated that package documentation is an im-
ortant factor when looking for a package to use. Based on these
indings, we recommend developers invest more effort in making
heir package documentation, particularly readme files, clearer
nd up to date.
Package selection factors should be measured in the con-

ext of what they reflect. Developers could use some factors
s a proxy to reflect other aspects of the projects, e.g. checking
he commit frequency as an indication of project activity. So,
easuring a factor in isolation from other factors that indicates

he same aspects could be misleading. We can see in Table 6 that
ommit Frequency has a lower rank in the quantitative results
han the qualitative results. The same applies to Releases, another
actor related to project activity. At the same time, we see that
he Closed Issues factor has a higher rank in the quantitative
esults than the qualitative results, even though it reflects the
ame aspect, project activity.

. Threats to validity

In this section, we discuss the potential threats to the validity
f our work.
11
Table 6
Qualitative results vs. quantitative results.
Factor Rank Shift

Qualitative Quantitative

Documentation 1 6 ↓ 5
Downloads 2 1 ↑ 1
Stars 3 2 ↑ 1
Vulnerabilities 4 4 −−

Release 5 12 ↓ 7
Commits frequency 6 11 ↓ 5
Closed issue 7 3 ↑ 4
License 8 13 ↓ 5
Usage 9 14 ↓ 5
Test code 10 9 ↑ 1
Dependencies 11 7 ↑ 4
Contributors 12 10 ↑ 2
Build status 13 8 ↑ 5
Website 14 15 ↓ 1
Badges 15 5 ↑ 10

6.1. Internal validity

Internal validity concerns factors that could have influenced
our results. To qualitatively understand the factors that may
impact the use of an npm package, we surveyed JavaScript de-
velopers. While we carefully designed our survey based on the
guideline provided in Dillman (2011), our survey might have been
influenced by some factors. First, our survey participants might
poorly understand some of the factor statements. To mitigate
this limitation, we conducted a pilot survey where we gave our
survey to three expert JavaScript developers and incorporated
their feedback about the survey. Second, we had a list of well-
defined factors that may impact selecting an npm package. Even
though we choose to study these factors since they are used in the
literature and can be easily examined by developers, we may miss
some other factors. To mitigate this threat, in our survey, we had
one open-ended question, where we asked developers to provide
us with any factors that are missed in our survey (Dillman, 2011).
That said, none of our survey responses reported any new factors
that can be quantitative.

To recruit participants in our survey, we resorted to develop-
ers who publish and use packages from the npm ecosystem. At
the beginning of the survey, we articulated that the purpose of
our study is to understand how developers select npm packages.
This description may attract more attention from developers, who
use npm packages more.

6.2. Construct validity

Construct validity considers the relationship between theory
and observation in case the measured variables do not measure



S. Mujahid, R. Abdalkareem and E. Shihab The Journal of Systems & Software 198 (2023) 111588

t
n
t
a
h

he actual factors. In our study on the npm ecosystem, we used
pms platform (Cruz and Duarte, 2018) to measure various quan-
itative factors related to download counts, testing, and having
website. Our measurements are only as accurate as npms;

owever, given that npms is the main search tool for npm, we
are confident in the npms metrics. We also used Snyk (2021)
to calculate the number of vulnerabilities that affect the studied
packages. Thus, our analyses are as accurate as Snyk dataset.
That said, we resorted to using the Snyk data since it has been
used by other prior work (e.g., Alfadel et al., 2021; Zapata et al.,
2018; Decan et al., 2018; Chinthanet et al., 2021). In addition,
we wrote a crawler to extract factors from the Github platform
through the use of Github API, so our collected data might be
affected by the accuracy of this public API. Furthermore, In our
study, we investigated package factors that can be observed in
a mechanical way (e.g., examine the Github repository of the
package). However, developers might select npm packages based
on a discussion or recommendation by other developers. Thus,
our studied factors may not present the whole picture. Further,
to ensure that our survey participants have sufficient experience
in JavaScript development and in selecting and using npm pack-
ages, thus, we asked the participants three questions related to
their development experiences in our survey. The participants are
asked to choose one of the following options (scale): <1 year, 1–
3, 4–5, or more than five years for each question. As a result, those
questions may be limited to presenting all participants with more
than five years of experience as one group.

6.3. External validity

Threats to external validity concern the generalization of our
findings. In our study, we investigated the factor that impacts
highly-selected packages that are published on the npm ecosys-
tem. Our results might not be generalized to other software
ecosystems, such as maven for Java or PyPi for Python. However,
since npm ecosystem is the most popular software ecosystem,
this gave us confidence in our results. Also, scientific literature
showed that studying individual cases has significantly increased
our knowledge in areas such as economics, social sciences, and
software engineering (Flyvbjerg, 2006). Second, our dataset that
was used in the quantitative analysis presents only open-source
packages hosted on GitHub that do not reflect proprietary pack-
ages or packages that are hosted on other platforms such as
GitLab and BitBucket. Furthermore, we surveyed 118 JavaScript
developers, so we do not claim that our results are generalized
to other developers who do not know JavaScript or the npm
software ecosystem.

Finally, one criticism of empirical studies results is ‘‘I know
it all along’’ thought or nothing new is learned. However, such
common knowledge has rarely been shown to be trusted and
is often quoted without scientific and research evidence. Our
paper provides such evidence and supports common knowledge
(e.g., ‘‘packages with good documentations tend to be highly-
selected packages’’) while some are challenged (e.g., ‘‘developers
do not consider the number of badges when selecting a new
package to use’’.).

7. Conclusion

In this work, we used a mixed qualitative and quantitative
approach to investigate the characteristic of highly-selected npm
packages. We started by identifying seventeen packages selection
factors based on our literature review and used by existing on-
line package search tools. Then, we qualitatively investigated the
factors developers look for when choosing an npm package by

surveying 118 JavaScript developers. Second, we quantitatively

12
examined these factors by building a logistic regression model us-
ing a dataset of 2527 npm packages divided into highly-selected
and not highly-selected packages.

Among our main findings, we highlighted that JavaScript de-
velopers believe that highly-selected packages are well-
document, receive a high number of stars on GitHub, have a large
number of downloads, and do not suffer from security vulner-
abilities. Moreover, our regression analysis complemented what
developers believe about highly-selected packages and showed
the divergences between the developers’ perceptions and the
characteristics of highly-selected packages.

CRediT authorship contribution statement

Rabe Abdalkareem: Supervision. Emad Shihab: Supervision.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Acknowledgments

The authors would like to thank all the developers and man-
agers who provided their valuable feedback during the survey.

References

Abdalkareem, R., 2017. Reasons and drawbacks of using trivial npm packages:
the developers’ perspective. In: Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering. pp. 1062–1064.

Abdalkareem, R., Nourry, O., Wehaibi, S., Mujahid, S., Shihab, E., 2017. Why
do developers use trivial packages? An empirical case study on npm. In:
Proceedings of the 2017 11th Joint Meeting on Foundations of Software
Engineering. In: ESEC/FSE 2017, Association for Computing Machinery, pp.
385–395.

Abdalkareem, R., Oda, V., Mujahid, S., Shihab, E., 2020. On the impact of using
trivial packages: an empirical case study on npm and PyPI. Empir. Softw.
Eng. 25 (2), 1573–7616.

Abdellatif, A., Zeng, Y., Elshafei, M., Shihab, E., Shang, W., 2020. Simplifying the
search of npm packages. Inf. Softw. Technol. 126, 106365.

Alfadel, M., Costa, D.E., Shihab, E., 2021. Empirical analysis of security vulnerabil-
ities in python packages. In: 2021 IEEE International Conference on Software
Analysis, Evolution and Reengineering. SANER, IEEE, pp. 446–457.

Bavota, G., Linares-Vásquez, M., Bernal-Cárdenas, C.E., Penta, M.D., Oliveto, R.,
Poshyvanyk, D., 2015. The impact of API change- and fault-proneness on the
user ratings of android apps. IEEE Trans. Softw. Eng. 41 (4), 384–407.

Begel, A., Bosch, J., Storey, M., 2013. Social networking meets software develop-
ment: Perspectives from GitHub, MSDN, Stack Exchange, and TopCoder. IEEE
Softw. 30 (1), 52–66.

Borges, H., Valente, M.T., 2018. What’s in a GitHub star? Understanding repos-
itory starring practices in a social coding platform. J. Syst. Softw. 146,
112–129.

Bradley, A.P., 1997. The use of the area under the ROC curve in the evaluation
of machine learning algorithms. Pattern Recognit. 30 (7), 1145–1159.

Chatzidimitriou, K.C., Papamichail, M.D., Diamantopoulos, T., Oikonomou, N.,
Symeonidis, A.L., 2019. Npm packages as ingredients: A recipe-based ap-
proach. In: Proceedings of the 14th International Conference on Software
Technologies - Volume 1: ICSOFT. INSTICC, SciTePress, pp. 544–551.

Chinthanet, B., Kula, R.G., McIntosh, S., Ishio, T., Ihara, A., Matsumoto, K., 2021.
Lags in the release, adoption, and propagation of npm vulnerability fixes.
Empir. Softw. Eng. 26 (3), 1–28.

Cruz, A., Duarte, A., 2018. npms. https://npms.io/about. (Accessed on
01/30/2021).

Dabbish, L., Stuart, C., Tsay, J., Herbsleb, J., 2012. Social coding in GitHub: Trans-
parency and collaboration in an open software repository. In: Proceedings
of the ACM 2012 Conference on Computer Supported Cooperative Work. In:
CSCW 2012, ACM, pp. 1277–1286.

de la Mora, F.L., Nadi, S., 2018. An empirical study of metric-based comparisons
of software libraries. In: Proceedings of the 14th International Conference
on Predictive Models and Data Analytics in Software Engineering. PROMISE
’18, Association for Computing Machinery, New York, NY, USA, pp. 22–31.

DeBill, E., 2022. Modulecounts. http://www.modulecounts.com/. (Accessed on
01/25/2022).

http://refhub.elsevier.com/S0164-1212(22)00264-3/sb1
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb1
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb1
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb1
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb1
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb2
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb2
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb2
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb2
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb2
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb2
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb2
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb2
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb2
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb3
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb3
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb3
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb3
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb3
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb4
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb4
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb4
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb5
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb5
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb5
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb5
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb5
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb6
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb6
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb6
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb6
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb6
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb7
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb7
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb7
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb7
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb7
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb8
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb8
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb8
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb8
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb8
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb9
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb9
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb9
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb10
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb10
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb10
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb10
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb10
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb10
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb10
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb11
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb11
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb11
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb11
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb11
https://npms.io/about
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb13
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb13
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb13
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb13
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb13
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb13
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb13
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb14
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb14
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb14
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb14
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb14
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb14
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb14
http://www.modulecounts.com/


S. Mujahid, R. Abdalkareem and E. Shihab The Journal of Systems & Software 198 (2023) 111588

D

D

d

D

F

F

G

G

G

H

H

H

H

H

I

J

J

K

K

L

L

L

L

M

M

M

M

M

N

ecan, A., Mens, T., Claes, M., 2017. An empirical comparison of dependency
issues in OSS packaging ecosystems. In: 2017 IEEE 24th International
Conference on Software Analysis, Evolution and Reengineering. SANER, pp.
2–12.

ecan, A., Mens, T., Constantinou, E., 2018. On the impact of security vulnerabil-
ities in the npm package dependency network. In: Proceedings of the 15th
International Conference on Mining Software Repositories. pp. 181–191.

el Bianco, V., Lavazza, L., Morasca, S., Taibi, D., 2011. A survey on open source
software trustworthiness. IEEE Softw. 28 (5), 67–75.

illman, D.A., 2011. Mail and Internet Surveys: The Tailored Design Method–
2007 Update with New Internet, Visual, and Mixed-Mode Guide. John Wiley
& Sons.

lyvbjerg, B., 2006. Five misunderstandings about case-study research. Qual. Inq.
12 (2), 219–245.

ranch, X., Carvallo, J.P., 2003. Using quality models in software package
selection. IEEE Softw. 20 (1), 34–41.

itHub, 2021a. GitHub GraphQL API - GitHub docs. https://docs.github.com/en/
graphql. (accessed on 01/27/2022).

itHub, 2021b. GitHub REST API - GitHub docs. https://docs.github.com/en/rest.
(accessed on 01/27/2022).

ousios, G., Pinzger, M., Deursen, A.v., 2014. An exploratory study of the pull-
based software development model. In: Proceedings of the 36th International
Conference on Software Engineering. In: ICSE 2014, pp. 345–355.

aefliger, S., von Krogh, G., Spaeth, S., 2008. Code reuse in open source software.
Manage. Sci. 54 (1), 180–193.

aenni, N., Lungu, M., Schwarz, N., Nierstrasz, O., 2013. Categorizing developer
information needs in software ecosystems. In: Proceedings of the 2013
International Workshop on Ecosystem Architectures. In: WEA 2013, ACM,
pp. 1–5.

arrell, Jr., F.E., 2015. Regression Modeling Strategies: With Applications to
Linear Models, Logistic and Ordinal Regression, and Survival Analysis.
Springer.

ata, H., Todo, T., Onoue, S., Matsumoto, K., 2015. Characteristics of sustainable
OSS projects: A theoretical and empirical study. In: 2015 IEEE/ACM 8th
International Workshop on Cooperative and Human Aspects of Software
Engineering. IEEE, pp. 15–21.

auge, O., Osterlie, T., Sorensen, C., Gerea, M., 2009. An empirical study on
selection of open source software - preliminary results. In: 2009 ICSE
Workshop on Emerging Trends in Free/Libre/Open Source Software Research
and Development. IEEE, pp. 42–47.

asonos, A., Schrag, D., Raj, G.V., Panageas, K.S., 2008. How to build and interpret
a nomogram for cancer prognosis. J. Clin. Oncol. 26 (8), 1364–1370.

adhav, A.S., Sonar, R.M., 2009. Evaluating and selecting software packages: A
review. Inf. Softw. Technol. 51 (3), 555–563.

ohn, W., Creswell, P.C., CLARK, V., 2000. Designing and Conducting Mixed
Methods Research. SAG.

ashcha, A., 2017. npm packages sorted by pagerank. http://anvaka.github.io/
npmrank/online/. (Accessed on 11/24/2017).

endall, M.G., 1938. A new measure of rank correlation. Biometrika 30 (1/2),
81–93.

arios Vargas, E., Aniche, M., Treude, C., Bruntink, M., Gousios, G., 2020. Selecting
third-party libraries: The practitioners’ perspective. In: Proceedings of the
28th ACM Joint Meeting on European Software Engineering Conference and
Symposium on the Foundations of Software Engineering. ACM, pp. 245–256.

ee, D., Rajbahadur, G.K., Lin, D., Sayagh, M., Bezemer, C.-P., Hassan, A.E., 2020.
An empirical study of the characteristics of popular Minecraft mods. Empir.
Softw. Eng. 25 (5), 3396–3429.

essmann, S., Baesens, B., Mues, C., Pietsch, S., 2008. Benchmarking classification
models for software defect prediction: A proposed framework and novel
findings. IEEE Trans. Softw. Eng. 34 (4), 485–496.

i, H., Shang, W., Zou, Y., Hassan, A.E., 2017. Towards just-in-time suggestions
for log changes. Empir. Softw. Eng. 22 (4), 1831–1865.

eloca, R., Pinto, G., Baiser, L., Mattos, M., Polato, I., Wiese, I.S., German, D.M.,
2018. Understanding the usage, impact, and adoption of non-OSI approved
licenses. In: Proceedings of the 15th International Conference on Mining
Software Repositories. MSR ’18, Association for Computing Machinery, pp.
270–280.

idi, H., Sarkar, S.K., Rana, S., 2010. Collinearity diagnostics of binary logistic
regression model. J. Interdiscip. Math. 13 (3), 253–267.

ujahid, S., 2021. Effective Dependency Management for the JavaScript Software
Ecosystem (Ph.D. thesis). Concordia University, Montreal, Quebec ,Canada.

ujahid, S., Abdalkareem, R., Shihab, E., 2022. Dataset: What are the char-
acteristics of highly-used packages? A case study on the npm ecosystem.
http://dx.doi.org/10.5281/zenodo.6592024.

ujahid, S., Costa, D.E., Abdalkareem, R., Shihab, E., Saied, M.A., Adams, B., 2021.
Toward using package centrality trend to identify packages in decline. IEEE
Trans. Eng. Manage. 1–15. http://dx.doi.org/10.1109/TEM.2021.3122012.

am, J., Kim, S., 2015. CLAMI: Defect prediction on unlabeled datasets (T).
In: 2015 30th IEEE/ACM International Conference on Automated Software
Engineering. ASE, IEEE, pp. 452–463.
13
npm, 2017. registry | npm Docs. https://docs.npmjs.com/cli/v6/using-npm/
registry. (accessed on 12/24/2020).

npm-Documentation, 2017. npm. https://www.npmjs.com/. (Accessed on
11/24/2017).

Oppenheim, A.N., 1992. Questionnaire Design, Interviewing and Attitude
Measurement. Pinter Publishers.

Pano, A., Graziotin, D., Abrahamsson, P., 2018. Factors and actors leading to the
adoption of a JavaScript framework. Empir. Softw. Eng. 23 (6), 3503–3534.

Qiu, S., Kula, R.G., Inoue, K., 2018. Understanding popularity growth of packages
in JavaScript package ecosystem. In: 2018 IEEE International Conference on
Big Data, Cloud Computing, Data Science & Engineering. BCD, IEEE, pp. 55–60.

Qiu, H.S., Li, Y.L., Padala, S., Sarma, A., Vasilescu, B., 2019. The signals that
potential contributors look for when choosing open-source projects. In:
ACM Conference on Computer-Supported Cooperative Work and Social
Computing. In: CSCW, ACM.

Rea, L.M., Parker, R.A., 2014. Designing and Conducting Survey Research: A
Comprehensive Guide. John Wiley & Sons.

Seaman, C.B., 1999. Qualitative methods in empirical studies of software
engineering. IEEE Trans. Softw. Eng. 25 (4), 557–572.

Semeteys, R., 2008. Method for qualification and selection of open source
software. Open Source Bus. Resour..

Serebrenik, A., Mens, T., 2015. Challenges in software ecosystems research. In:
Proceedings of the 2015 European Conference on Software Architecture
Workshops. ECSAW ’15, Association for Computing Machinery, New York,
NY, USA.

Sheoran, J., Blincoe, K., Kalliamvakou, E., Damian, D., Ell, J., 2014. Understanding
"Watchers" on GitHub. In: Proceedings of the 11th Working Conference on
Mining Software Repositories. In: MSR 2014, ACM, pp. 336–339.

Smith, E., Loftin, R., Murphy-Hill, E., Bird, C., Zimmermann, T., 2013. Improving
developer participation rates in surveys. In: 2013 6th International Workshop
on Cooperative and Human Aspects of Software Engineering. CHASE, IEEE,
pp. 89–92.

Snyk, 2021. Snyk | Developer security | Develop fast. Stay secure. https://snyk.io/.
(accessed on 01/31/2022).

StackOverflow, 2017. node.js - How to find search/find npm packages
- Stack Overflow. https://stackoverflow.com/questions/10568512/how-to-
find-search-find-npm-packages. (Accessed on 11/24/2017).

Team, S.E., 2019. Top open source licenses and legal risk. https://www.
synopsys.com/blogs/software-security/top-open-source-licenses/. (accessed
on 12/20/2020).

Temple, C., 2017. npm Discover · see what everyone else is using. http://www.
npmdiscover.com/. (Accessed on 11/24/2017).

Tian, Y., Nagappan, M., Lo, D., Hassan, A.E., 2015. What are the characteristics of
high-rated apps? A case study on free Android Applications. In: 2015 IEEE
International Conference on Software Maintenance and Evolution. ICSME, pp.
301–310.

Trockman, A., Zhou, S., Kästner, C., Vasilescu, B., 2018. Adding sparkle to social
coding: an empirical study of repository badges in the npm ecosystem. In:
Proceedings of the 40th International Conference on Software Engineering.
ACM, pp. 511–522.

Wasike, S.N., 2010. Selection process of open source software component.
Xu, B., An, L., Thung, F., Khomh, F., Lo, D., 2019. Why reinventing the wheels?

An empirical study on library reuse and re-implementation. Empir. Softw.
Eng..

Yamashita, K., Kamei, Y., McIntosh, S., Hassan, A.E., Ubayashi, N., 2016. Magnet or
sticky? Measuring project characteristics from the perspective of developer
attraction and retention. J. Inf. Process. 24 (2), 339–348.

Yan, M., Xia, X., Shihab, E., Lo, D., Yin, J., Yang, X., 2019. Automating change-level
self-admitted technical debt determination. IEEE Trans. Softw. Eng. 45 (12),
1211–1229.

Zapata, R.E., Kula, R.G., Chinthanet, B., Ishio, T., Matsumoto, K., Ihara, A., 2018.
Towards smoother library migrations: A look at vulnerable dependency
migrations at function level for npm JavaScript packages. In: 2018 IEEE
International Conference on Software Maintenance and Evolution. ICSME,
IEEE, pp. 559–563.

Zerouali, A., Cosentino, V., Mens, T., Robles, G., Gonzalez-Barahona, J.M., 2019a.
On the impact of outdated and vulnerable Javascript packages in Docker
images. In: 2019 IEEE 26th International Conference on Software Analysis,
Evolution and Reengineering. SANER, pp. 619–623.

Zerouali, A., Mens, T., Robles, G., Gonzalez-Barahona, J.M., 2019b. On the diversity
of software package popularity metrics: An empirical study of npm. In:
2019 IEEE 26th International Conference on Software Analysis, Evolution and
Reengineering. SANER, In: SANER 2019, IEEE, pp. 589–593.

Zheng, W., Zhang, Q., Lyu, M., 2011. Cross-library API recommendation using
web search engines. In: Proceedings of the 19th ACM SIGSOFT Symposium
and the 13th European Conference on Foundations of Software Engineering.
ACM, pp. 480–483.

http://refhub.elsevier.com/S0164-1212(22)00264-3/sb16
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb16
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb16
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb16
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb16
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb16
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb16
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb17
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb17
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb17
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb17
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb17
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb18
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb18
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb18
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb19
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb19
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb19
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb19
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb19
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb20
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb20
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb20
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb21
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb21
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb21
https://docs.github.com/en/graphql
https://docs.github.com/en/graphql
https://docs.github.com/en/graphql
https://docs.github.com/en/rest
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb24
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb24
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb24
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb24
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb24
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb25
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb25
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb25
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb26
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb26
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb26
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb26
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb26
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb26
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb26
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb27
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb27
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb27
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb27
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb27
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb28
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb28
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb28
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb28
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb28
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb28
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb28
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb29
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb29
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb29
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb29
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb29
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb29
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb29
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb30
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb30
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb30
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb31
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb31
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb31
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb32
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb32
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb32
http://anvaka.github.io/npmrank/online/
http://anvaka.github.io/npmrank/online/
http://anvaka.github.io/npmrank/online/
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb34
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb34
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb34
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb35
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb35
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb35
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb35
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb35
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb35
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb35
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb36
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb36
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb36
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb36
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb36
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb37
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb37
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb37
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb37
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb37
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb38
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb38
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb38
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb39
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb39
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb39
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb39
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb39
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb39
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb39
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb39
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb39
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb40
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb40
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb40
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb41
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb41
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb41
http://dx.doi.org/10.5281/zenodo.6592024
http://dx.doi.org/10.1109/TEM.2021.3122012
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb44
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb44
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb44
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb44
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb44
https://docs.npmjs.com/cli/v6/using-npm/registry
https://docs.npmjs.com/cli/v6/using-npm/registry
https://docs.npmjs.com/cli/v6/using-npm/registry
https://www.npmjs.com/
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb47
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb47
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb47
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb48
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb48
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb48
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb49
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb49
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb49
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb49
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb49
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb50
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb50
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb50
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb50
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb50
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb50
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb50
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb51
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb51
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb51
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb52
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb52
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb52
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb53
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb53
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb53
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb54
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb54
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb54
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb54
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb54
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb54
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb54
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb55
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb55
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb55
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb55
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb55
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb56
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb56
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb56
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb56
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb56
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb56
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb56
https://snyk.io/
https://stackoverflow.com/questions/10568512/how-to-find-search-find-npm-packages
https://stackoverflow.com/questions/10568512/how-to-find-search-find-npm-packages
https://stackoverflow.com/questions/10568512/how-to-find-search-find-npm-packages
https://www.synopsys.com/blogs/software-security/top-open-source-licenses/
https://www.synopsys.com/blogs/software-security/top-open-source-licenses/
https://www.synopsys.com/blogs/software-security/top-open-source-licenses/
http://www.npmdiscover.com/
http://www.npmdiscover.com/
http://www.npmdiscover.com/
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb61
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb61
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb61
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb61
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb61
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb61
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb61
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb62
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb62
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb62
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb62
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb62
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb62
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb62
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb63
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb64
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb64
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb64
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb64
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb64
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb65
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb65
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb65
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb65
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb65
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb66
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb66
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb66
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb66
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb66
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb67
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb67
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb67
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb67
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb67
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb67
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb67
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb67
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb67
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb68
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb68
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb68
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb68
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb68
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb68
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb68
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb69
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb69
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb69
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb69
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb69
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb69
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb69
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb70
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb70
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb70
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb70
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb70
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb70
http://refhub.elsevier.com/S0164-1212(22)00264-3/sb70


S. Mujahid, R. Abdalkareem and E. Shihab The Journal of Systems & Software 198 (2023) 111588

S
P
i
e
m
h
m
h

R
t
a
H
C

uhaib Mujahid is a senior software engineer at Mozilla. He obtained his
h.D. in Software Engineering from Concordia University, Canada. His research
nterests include mining software repositories, defect prediction and avoidance,
mpirical software engineering, and machine learning. Mujahid received his
aster’s in Software Engineering from Concordia University in 2017. His work
as been published at premier venues such as ICSE, FSE, ICSME, and MSR and
ajor journals such as TSE, EMSE, and TEM. You can find more about him at
ttps://suhaib.ca.

abe Abdalkareem is a lecturer in the department of computer science in
he Faculty of Science at Omar Al-Mukhtar University. Previously, he was an
ssistant professor in the School of Computer Science at Carleton University.
e obtained his Ph.D. in Computer Science and Software Engineering from
oncordia University, Canada. His research investigates how the adoption
14
of crowd-sourced knowledge affects software development and maintenance.
Abdalkareem received his masters in applied computer science from Concordia
University. His work has been published at premier venues such as FSE, ICSME,
and MSR and major journals such as TSE, IEEE Software, EMSE, and IST. More
information can be found at https://rabeabdalkareem.github.io/

Emad Shihab is a professor in the Department of Computer Science and
Software Engineering at Concordia University. He received his PhD from Queens
University. Dr. Shihabs research interests are in Software Quality Assurance,
Mining Software Repositories, Technical Debt, Mobile Applications and Software
Architecture. He worked as a software research intern at Research In Motion
in Waterloo, Ontario and Microsoft Research in Redmond, Washington. Dr.
Shihab is a member of the IEEE and ACM. More information can be found at
http://das.encs.concordia.ca.

https://suhaib.ca
https://rabeabdalkareem.github.io/
http://das.encs.concordia.ca

	What are the characteristics of highly-selected packages? A case study on the npm ecosystem
	Introduction
	Related Work
	Qualitative Analysis
	Study Design
	Survey Design
	Participant Recruitment
	Survey Participants
	Analysis Method

	Study Results

	Quantitative Analysis
	Study Design
	Data Collection
	Package Usage Factors

	Analysis Method
	Correlation Analysis
	Redundancy Analysis
	Logistic Regression
	Evaluating Performance
	Factors Importance

	Study Results

	Discussion
	Threats to Validity
	Internal Validity
	Construct Validity
	External Validity

	Conclusion
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgments
	References


