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Abstract—We show that, via temporal modulation, one can e, o, Coded.StobinaSchemalc .
observe and capture a high-speed periodic video well beyoritie frame rate {, = 25fps Computonaly
abilities of a low-frame-rate camera. By strobing the exposre ( Capre M= 125 10000 frames

with unique sequences within the integration time of each fame, [D#. _.@_.

we take coded projections of dynamic events. From a sequence Evk,,am,smu,am:so

of such frames, we reconstruct a high-speed video of the high | s temy e & docvs te s Sruures speseecorey
frequency periodic process. Strobing is used in entertainent, Coded Strobing: Time Domain

medical imaging, and industrial inspection to generate lowr At each pixel, the periodic signal is temporally modulated with a binary code

beat frequencies. But this is limited to scenes with a deteable mum -\I/\ IM W'/-\II
single dominant frequency and requires high-intensity lidnting. EPT— T
In this paper, we address the problem of sub-Nyquist samplig G T%{% Y Bﬁéwdm,}é-so
of periodic signals and show designs to capture and reconstct Coded Strobing: Frequency Domain

SuCh S|gnals_ The key result |s that for suCh S|gnalsy the Nyqst At a pixel, the M observed intensity values are linear combinations of the periodic signal's sparse Fourier coefficients
rate constraint can be imposed on the strobe rate rather than A

the sensor rate. The technique is based on intentional aliamy ‘ A A A A A |

of the frequency components of the periodic signal while the o A f O LR 4 e
reconstruction algorithm exploits recent advances in spase rep- [t e \.;

resentations and compressive sensing. We exploit the spaysof

periodic signals in the Fourier domain to develop reconstration Fig. 1: CSC: A fast periodic visual phenomenon is recorded by
algorithms that are inspired by compressive sensing. a normal video camera26 fps) by randomly opening and closing

_ _ ) ) _ ) the shutter at high spee@{00 Hz). The phenomenon is accurately
Index Terms—Computational imaging, high speed imaging, com- reconstructed from the captured frames at the high-speattestrate
pressive sensing, compressive video sensing, stroboscopy (2000 fps).

o I.INTRODUCTION _Instead of direct observation of beat frequencies, we éxalo
Periodic signals are all around us. Several human and an'reéhputational camera approach based on different sampling

biological processes such as heart-beat, breathing,@@e sequences. The key idea is to measure appropriate linear
lular processes, industrial automation processes any@er compinations of the periodic signal and then decode theasign
objects such as hand-mixer and blender all generate per!ogi, exploiting the sparsity of the signal in Fourier domain.
processes. Nevertheless, we are mostly unaware of the INAgY gpserve that by coding during the exposure duration of
workings of some of these high-speed processes because 8%, -frame-rate (e.9.25 fps) video camera, we can take
occur at a far greater speed than can be perceived by the hU@ﬁﬂropriate projections of the signal needed to recortstruc
eye. Here, we show a simple but eﬁective techniqu_e that CRIYh-frame-rate (e.g2000 fps) video. During each frame, we
turn an off-the-shelf video camera into a powerful highesbe srope and capture a coded projection of the dynamic event
video camera for observing periodic events. and store the integrated frame. After capturing severahés

Strobing is often used in entertainment, medical imaging awe computationally recover the signal independently aheac
industrial applications to visualize and capture highespePixel by exploiting the Fourier sparsity of periodic sigral
visual phenomena. Active strobing involves illuminatifget Our method of coded exposure for sampling periodic signals
scene with a rapid sequence of flashes within a frame time. Tiidermed ‘coded strobing’ and we call our camera the ‘coded
classic example is Edgerton’s Rapatron to capture a gotfgwistrobing camera’ (CSC). Figure 1 illustrates the functigni
[13]. In modern sensors, it is achieved passively by mudtipl of CSC.

exposures within a frame time [36][28] or fluttering [29]. We

use the term ‘strobing’ to indicate both active illuminatiand A Contributions

passive sensor methods. o We show that sub-Nyquist sampling of periodic visual

In case of periodic phenomenon, strobing is commonly used signals is possible and that such signals can be captured
to achieve aliasing and generate lower beat frequenciedeWh  and recovered using a coded strobing computational
strobing performs effectively when the scene consists of a camera.

single frequency with a narrow sideband, it is difficult tewi ~ « We develop a sparsity-exploiting reconstruction alganith

alize multiple or a wider band of frequencies simultanepusl ~ and expose connections to Compressive Sensing.
« We show that the primary benefit of our approach over

* Ashok Veeraraghavan and Dikpal Reddy contributed equalthis work. traditional strobing is, increased light-throughput and
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ability to tackle multiple frequencies simultaneously poson super-resolution for reconstruction based algorithingeh
capture. been explored in [1][22].

B. Benefits and limitations Stroboscopy and periodic m_ot_ion:Strobosc_opes (from the
reek wordoTpwfSwo for ‘whirling’) play an important role

The main constraint for recording a high-speed event %

light throughput. We overcome this constraint for periodicin scientific research, to study machinery in motion, in ente

signals via sufficient exposure duration (in each frame) argnment and m.ed|call imaging. Muybridge in his ploneering
extended observation window (multiple frames). For welwork used multiple triggered cameras to capture high-speed

lit non-periodic events, high-speed cameras are ideal. F—rBPtion of animals [25] and proved that_all four_of a horse’s
gEoves left the ground at the same time during a gallop.

a static snapshot, a short exposure photo (or single fra : X :
P P P ( g gerton also used flashing lamp to study machine parts in

of the high-speed camera) is sufficient. In both cases, i tion 1131, Th i hes for “f -
throughput is limited but unavoidable. Periodic signals ca{no lon [13]. ”e Most common approaches lor ireezing: or
owing down” the movement are based on temporal aliasing.

also be captured with high-speed camera. But one will ne - .
n medicine, stroboscopes are used to view the vocal cords

a well-lit scene or must illuminate it with unrealistic bhig _ i ) . .

lights. For example, if we use 2000 fps camera for vocal for_d|agn03|s. Th_e patient hums or speaks ”.“O a microphone

cord analysis instead of strobing using a laryngoscope, \Xyglgh in turn activates the stroboscope at e|ther the same or

would need a significantly brighter illumination source an slightly lower frequt_ency_ [20],[30]. Hovyevgr, in all heaft
mans, vocal-fold vibrations are aperiodic to a greater or

this creates the risk of burn injuries to the throat. A saf q Theref irobol q o
option would be25 fps camera with strobed light source an Sser degree. Therelore, strobolaryngoscopy does naireap
the fine detail of each individual vibratory cycle; rather, i

then exploit the periodicity of vocal fold movement. Heres w

show that an even better option in terms of Iight-throughpﬁt'olWS aZA[rJa;tzernMavgrage(z oE)/er manyf succesr?_lve nomdephcal
is a computational camera approach. Further, the need® es [24][32]. Modern strobocopes for machine inspectio

know frequency of the signal at capture-time is also avaid ] are (_jeS|gned for o.bservmg fast repeated ".‘0“0”3 and fp
Moreover, the computational recovery algorithm can tack etermining RPM. The idea can also be used to improve spatial

the presence of multiple fundamental frequencies in a sceﬁ%somtion by introducing high-frequency illuminationgf1

which poses a challenge to traditional strobing. Processing:In computer vision, periodic motion of humans
has received significant attention. Seitz et al. [31] introet

C_‘ Related Work ] ) ) a novel motion representation, called the period tracet tha
High-speed imaging hardware:Capturing high-speed eventsyqyides a complete description of temporal variations in a

with fast, high-frame rate cameras require imagers witth higy cjic motion, which can be used to detect motion trends and
photoresponsivity at short integration times, synchr@nex- jrreqyarities. A technique to repair videos with largetista
posure and high-speed parallel readout due to the necesap qround or cyclic motion was presented in [18]. Laptev et
bandwidth. In addition, they suffer from challenging s@&a 5| [19] presented a method to detect and segment periodic
problems. A high-speed camera also fails to exploit therintg,,5tion based on sequence alignment without the need for

frame coherence, while our technique takes advantage Qfera stabilization and tracking. [5] exploited peridgtic

a simplified model of motion. Edgerton and others havg mying objects to perform 3D reconstruction by treating

shown visually stunning results for high-speed object®@iSifames with same phase to be of same pose observed from
extremely narrow-duration flash [13]. These snapshotsic@pt yigterent views. In [34], the authors showed a strobe based

an mstant_of the action bu_t fail to indicate the gene@pproach for capturing high-speed motion using multiexpes

movement in the scene. Multiple low-frame rate cameras Cfiages obtained within a single frame of a camera. The images
be combined to create high-speed sensing. Using a stagg§fed, paseball appear as distinct non-overlapping positions
exposure approach, Shechtman et al. [33] used frames edptyf, the image . High temporal and spatial resolution can be

by multiple co-located cameras with overlapped expOsUgiained via a hybrid imaging device which consists of a high
time. This staggered exposure approach also assisted & NQy&yia| resolution digital camera in conjunction with a thig
reconfigurable multi-camera array [37]. Although there ate, e rate but low resolution video camera [6]. In casesrerhe
very few methods to super-resolve a video temporally [15he motion can be modeled as linear, there have been several
numerous super-resolution techniques have been propoggdresiing methods to engineer the motion blur point sprea
to increase the spatial resolution of images. In [17], SUP§(inction so that the blur induced by the imaging device is
resolution technique to reconstruct a high-resolutiongena; ertible. These include coding the exposure [29] and mgvi
from a sequence of low-resolution images was proposed %, sensor during the exposure duration [21]. The method
backprojection method. A method to do super-resolution Qesented in this paper tackles a different but broadiytedla

a low quality image of a moving object by first tracking ity opiem of reconstructing periodic signals from very low-

estimating motion and deblurring the motion blur and créti geed images acquired via a conventional video camerit(albe

a high quality image was proposed in [4]. Freeman et al. [14},h5nced with coded exposure).
proposed a learning based technique for superresolution fr

one image where the high frequency components like eddgésmparison with flutter shutter: In [29], the authors showed
of an image are filled by patches obtained from examples wittiat by opening and closing the shutter according to an
similar low resolution properties. Finally, fundamentiahits optimized coded pattern during the exposure duration of a
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photograph, one can preserve high-frequency spatiallsié@tai Hz, one can exactly reconstruct the band-limited signal, by
the blurred captured image. The image can be then de-blurjest observing discrete samples of the signal at a sampling
using a manually specified point-spread function. Simjlarlrate f; greater thar2 f, [27]. When the signal has frequency
we open and close the shutter according to a coded patteamponents that are higher than the prescribed band-thmain,
and this code is optimized for capture. Nevertheless, there during the reconstruction, the higher frequencies gesetias
significant differences in motion models and reconstructidower frequencies making the reconstruction erroneous (se
procedures of both these methods. In flutter shutter (FS)Fmure 2(Right)(c)). If the goal is to capture a signal whose
constant velocity linear motion model was assumed and deaximum frequencymax is 1000 Hz, then one needs a high-
blurring was done in blurred pixels along the motion directi speed camera capable 2000 fps in order to acquire the
On the other hand, CSC works even on very complicataijnal. Such high-speed video cameras are light limited and
motion models as long as the motion is periodic. In CSE&xpensive.

each of the captured frames is the result of modulation Wi@and-pass sampling (strobing):If the signal is periodic as
a different binary sequence whereas in FS a single frame_|S '

modulated with a ‘all-pass’ code. Further, our method casts ;Sheowgrilg dilf:lgsli”iaIZ(lIJ_ ef;)é?n), ”t::enatwae f;::nulennt(e:)nt\l/oer:allg/lozléatso
fundamentally with FS in reconstruction of the frames. | b 9 y ping 9 y Very

FS the system of equations is not under-determined wherﬂ1e fundamental frequency of the signal as shown in Figure

) . eft)(e). This intentional aliasing allows us to measure
in CSC we have a severely under-determined system. ST . . .
. o : e periodic signal. This technique is commonly used for
overcome this problem b§; -norm regularization, appropriate . L o .
. . L ST vocal fold visualization [24][32]. However, traditionatsbing
for enforcing sparsity of periodic motion in time. In FS a oA
. . . oo suffers from the following limitations. The frequency ofeth
single system of equations is solved for entire image wlserea. . : )
) : . original signal must be known at capture-time so that one
in CSC at each pixel we temporally reconstruct the periodic

. . ) . may perform strobing at the right frequency. Secondly, the
signal by solving an under-determined system. strobe signal must be ‘ON’ for a very short duration so

D. Capture and reconstruction procedure that the observed high-speed signal is not smoothed out and

The sequence of steps involved in capture and reconstructiBis makes traditional strobing light-inefficient. Despithis
of a high-speed periodic phenomenon with typical physicAgndicap, traditional strobing is an extremely interggstmd
values are listed below with references to appropriateaest Useful visualization tool (and has found several applooei
for detailed discussion. in varying fields).

. Goal: Using a25 fps camera and a shutter which Calg\lon—uniform sampling: With periodic sampling, aliasing
open and close 2000 Hz, capture a high-speed periodiCoccurs when the sampling rate is not adequate because, all

phenomenon of unknown period by observing for 5s. frequencies of the fornfi, +%- fs (k an inFeger) lead tp identical
« The length of the binary code neededVs= 2000 x 5 = Samples. One method to counter this problem is to employ
10000. For an upsampling factor off = 2000/25 = non-uniform or random sampling [7][23]. The key idea in non-

80, find the optimal pseudo random code of length uniform sampling [7][23] is to ensure a set of sampling intda
(Section 11I-A). such that the observation sequence for any two frequencies

« CaptureM = 25 x 5 = 125 frames by fluttering the are different at least in one sampling instant. This schease h
shutter according to the optimal code. Each captureggver found widespread practical applicability becausésof
frame is an integration of the incoming visual signahoise sensitivity and light inefficiency.
modulated with a corresponding subsequence of binary

values of length/ = 80 (Section II-C). B. Periodic signals . _ .
. Estimate the fundamental frequency of the periodic sign@ince, the focus of this paper is on high-speed video capfure
(Section 11-D3). periodic signals, we first study the properties of such dgjna

« Using the estimated fundamental frequency, at each pi)ﬁSIFo ier d . " f periodic sianal€onsid
reconstruct the periodic signal of length= 10000 from 'gnalIJ::?tr) (\jvmhilﬂ E:)szr gees;ingpe:”ci/I;PSIg:g a %I;Sr:dﬁrrn?[

M = 125 values by recovering the signal’s sparse Fouri%l . ) . . .
coefficients (Section 11-D). Max- Since the signal is periodic, we can express it as,

j=Q
II.STROBING AND LIGHT MODULATION 2(t) = zpc + Z a;j cos(2mj fpt) + b;sin(2mj fpt) (1)
A. Traditional sampling techniques J=1

Sampling is the process of converting a continuous doma]m' : : .
ampiing proc 9 herefore, the Fourier transform of the signdk) contains
signal into a set of discrete samples in a manner that allows . . L
. ; . . __energy only in the frequencies corresponding;ji®, where
approximate or exact reconstruction of the continuous doma c {2Q,~(Q—1),..0,1, .., Q}. Thus, a periodic signal has
a ) ) ) ) ) 1

signal from just the discrete samples. The most fundament

result in sampling is that of Nyquist-Shannon sampling thgl\__maximum Of(K = 2Q) + 1) non-zero Fourier coefficients,
orem. Figure 2 provides a graphical illustration of tramtitl herefore, periodic signals by definition, have a very spars

sampling techniques applied to periodic signals representation in the Fourier domain. Recent advances in
' the field of compressed sensing (CS) [12][9][2][8][35] have

Nyquist sampling: Nyquist-Shannon sampling states thatleveloped reliable recovery algorithms for inferring Sgenep-

when a continuous domain signal is band-limited[@9 f;] resentations if one can measure arbitrary linear comlingti
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(@) Periodic Signal (x(t)) with period P (@) Periodic signal with period P, band-limited to f . Fourier domain contains
N\ M M M M M only terms that are multiples of f =~ ,=1/P
P t ﬁ A
I I
T 2fp -t 0 f=1/P 2f, Torae
(b) Box filter of duration T g, applied to the periodic signal (b) Sinc response of the box filter attenuates the harmonics near it s zeros (green)
‘ N N N\ L and the high frequencies (
p t
Toox = Terams L~ /\/\ /\/\ po~ |
e N 0\ VY
(c) Normal Video Camera: Frames of the normal cameraca n be treated as the e fe=1/Tgox Mex
samples (every T .me) Of the output of the above box filter. (c) Normal Camera causes aliasing of high frequency inf ~ ormation ( , green, )
Aliasing fs = 1/Terame = Sampling Frequency

Trrame= Frame Duration

PN WY | haa A
0

™ fitax

High-speed Video Camera wastes the bandwidth and is inefficient since periodic
signal is sparse in the Fourier domain

(d) High-speed Video Camera: Nyquist Sampling of (x(t)) ~ — Since each period ()
of x has very fine high frequency variations Nyquis t sampling rate is very
A A

high. . Ny
lv T ll’ I ll’ I ll’ I i ll’ i
T 11 11| ‘ Il |

ax

I
- fiax fiax

(¢)  Traditional Strobing: Sampling rate of camerais|  ow, but the light (e) Traditional Strobing requires the period of the sig  nal to be known before capture
throughput is also very low in order to avoid blurr ing the features during oo = UTsuone ~ fp
= i T -P T e 0 Max
Tsiobe = Strobe Duration Strobe

. . i X o (f) Coded Strobing: Measure linear combinations of a pe  riodic signal's harmonics.
(f) Coded Strobing: In every exposure duration differen t linear combinations of

the underlying periodic signal are observed A
E@;ﬂ@m’ﬂ&@@w o Ly

) T - fyax 4fp 2fp T 0 fp=1/P 2fp 4fs v f

Coded strobing is independent of the frequency f p=1/P. Light throughput is on —_

an average 50% which is significantly greater than traditional strobing.
Time Domain Frequency Domain

Fig. 2: Time domain (Left) and the corresponding frequency domRight) characteristics of various sampling techniques pgligable

to periodic signals. Note that capturing high-speed vissighals using normal camera can result in attenuation ohHigquencies ((b) and
(c)) whereas a high-speed camera demands large bandwiditan@ traditional strobing is light-inefficient (e). Codettabing is shown in
(f). To illsutrate sampling only two replicas have been sh@md note that colors used in time domain and frequency doier@ unrelated.

of the signals. Here, we propose and describe a method &drsignals as quasi-periodic. For example, the Crest toa#ib
measuring such linear combinations and use the recorisinuctve use in our experiments exhibits a quasi-periodic motion
algorithms inspired by CS to recover the underlying pedodivith fundamental frequency that varies betwean— 64 Hz.
signal from its low-frame-rate observations. Figure 4(a) shows few periods of a quasi-periodic signal at

. - ) a pixel of a vibrating tooth brush. Variation in fundamen-
2)Effect of visual texture on periodic motiokisual texture on | frequency fp, between63 and 64 Hz, over time can

surfaqes e>.<hibiting periodic m_otion introduces high freaey  pe seen in (b). Variation infp of a quasi-periodic signal
variations in the observed S|gngl (Figure 3(d)). AS, a VeI¥ reflected in its Fourier transform which contains energy
simple instructive example consider the fan shown in Figupg,, just at multiples;j f» but in small band around fp.
3(a). The fan rotates at a relatively slow rateSdi3 Hz. This  Neyertheless, like periodic signals, the Fourier coeffitie

would seem to indicate that in order to c_apture the spi_nnlrége concentrated atfp (Figure 4(c)) and are sparse in the
fan one only needs .66 fps camera. During exposure im&eq,ency domain. The coefficients are distributed in a band

of 60 ms of a16.66 Hz camera, the figure ‘1’ written on |, A - - _
' — , + jAfp]. For example = 0.75 Hz
the fan blade completes about half a revolution blurring ;ﬁfllgigurje L{(la)_]fp jafr] PleAfr

out (Figure 3(b)). Shown in Figure 3(c) is the time profile

of the intensity of a single pixel using a high-speed video i )

camera. Note that the sudden drop in intensity due to the C0ded exposure sampling (or Coded strobing)

dark number ‘1’ appearing on the blades persists only fdihe key idea is to measure appropriate linear combinatiéns o
about 1 millisecond. Therefore, we need1@00 fps high- the periodic signal and then recover the signal by explgitin
speed camera to observe the ‘1" without any blur. In shost, tlhe sparsity of the signal in Fourier domain (Figure 5). Ob-
highest temporal frequency observed at a pixel is a productserve that by coding the incoming signal during the exposure
the highest frequency of the periodic event in time and tlturation, we take appropriate projections of the desirgdagi

highest frequency of the spatial pattern on the objectssacro

the direction of motion. This makes the capture of high-gped) Camera observation modelConsider a luminance signal

periodic signals with texture more challenging. a(t). If the signal is band-limited 10— faraz » fraz), then in
order to accurately represent and recover the signal, we onl

3) Quasi-periodic signalsMost real world “periodic signals” need to measure samples of the signal thatare 1/(2frraz)
are not exactly so, but almost; there are small changes in #ygart wherejt represents the temporal resolution with which
period of the signal over time. We refer to such broader clag® wish to reconstruct the signal. If the total time of obssyv
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Signal at a pixel over few periods

120 Period P = 119 ms Frequency spectrum of the signal at pixel (115,245)

1001

(d)

) 80F Fundamental frequency
= z

10

fP78433H
195200 A K J\ “M‘““ III AL

GO 50 100 150 200 250 Frequency in Hz
Time in ms

60

40- 1 ms notch due
to'1

Magnitude of FT in log scale

20r

(a) A frame from high speed video  (b) A frame from 16.66 fps video

Fig. 3: (a) Video of a fan from a high-speed camera (b) A 16.66 Hz carhkrrs out the ‘1’ in the image (c) Few periods of the signal at
a pixel where the figure ‘1’ passes. Note the notch of durations in the intensity profile. (d) Fourier transform of the sgim (c). Notice
the higher frequency components in a signal with low fundaaidrequencyfp.

05 (a) Quasi-periodic signal o (b) Time varying fund. freq. f

For example, in the experiment shown in Figure I§,.. =

1000 Hz, and f, = 25 fps. Therefore, the upsampling factor
W achieved is80, i.e., the frame-rate of CSC is eighty times
smaller than that of an equivalent high-speed video camera.
Even though, the modulation function can be arbitrary, in

°
=
3 b

)
N
Frequency in Hz
o
S

o1 o practice it is usually restricted to be binary (open or close

0 shutter). Effective modulation can be achieved with cotas t

15 i 1 iss 18 i "o 05 1 is 2 25 3 have a50% transmission, i.e., the shutter is open 0% of

s x 10 Time in ms x 10" . L . .
(c) Fourier coefficients d) Energy around fund. fre . the total time, thereby limiting light-loss at capture-&ino
1400 just 50%.

5000
4000 e 2) Signal model:If z, the luminance at a pixel is bandlimited

N
5]
S
S

it can be represented as,

3000

urier Coefficients
o ®
& 3
s 3

Fourier Coefficients

o el x = Bs, (4)
1000 I \
200
T— 8 4 O where, the columns of3 contain Fourier basis elements.
-200 -100 0 100 200 60 61 62 63 64 65 66 i . . ) i
Frequency in Hz Frequency in Hz Moreover, since the signat(t) is assumed to be periodic,

Fig. 4: (a) Six periods of aN = 32768 ms long quasi-periodic We know that the basis coefficient vectors sparse as shown
signal at a pixel of a scene captured W00 fps high-speed in Figure 5. Putting together the signal and observationehod

camera. (b) Fundamental frequengy varying with time. (c) Fourier the intensities in the observed frames are related to this bas
coefficients of the quasi-periodic signal shown in (a). (d) Zbom coefficients as

we notice that the signal energy is concentrated in a bandirzdo

the fundamental frequencfpr and its harmonics.
y=Cxz+n=CBs+n=As+n, ©)

the signal isNét, then theN samples can be represented in . . . .
a N dimensional vector.. whereA is the effective mixing matrix of the forward process.
Recovery of the high-speed periodic motianamounts to
In a normal camera, the radiance at a single pixel is intedratsolving the linear system of equations (5).
during the exposure time, and the sum is recorded as the
observed intensity at a pixel. Instead of integrating dyrirb
the entire frame duration, we perform amplitude modulation’
of the incoming radiance values, before integration. Tten tTO reconstruct the high-speed periodic signalt suffices to

as observationg; of the scene.

Reconstruction algorithms

y = Cx+n, (2)  Unknowns, measurements and sparsitytn (5), the number
of unknowns exceeds the number of known variables by a

where theM x N matrix C' performs both the modulation and . .
integration for frame duration, angrepresents the observationfaCtorU (typically 80) and hence the system of equations (5)

noise. Figure 5 shows the structure of mattixIf the camera IS seyerely under-determined/( << N). 1_'0 obtain robust
observes a frame every; seconds, the total number Ofsc_)lu'uons, furth(_ar knongdge about the _S|g_nal_must be used.
frames/observations would b/ = Nét/Ts and soy is a Since the Fourier co_efﬂClents_ of a penqdlc 5'9“"?“’“" are
S

M x 1 vector. The camera sampling tirig is far larger than sparse, a reconstruction techmque.enforcmg sparsitycotild
the time resolution we would like to achieveét), therefore still hope to recover the periodic signal
M << N. The upsampling factor (or decimation ratio) ofye present two reconstruction algorithms, one which emf®rc
CSC can be defined as, the sparsity of the Fourier coefficients and is inspired by

_ N 2fras compressive sensing and other which additionally enfattoes

Upsampling factor= U = - = o (3) structure of the sparse Fourier coefficients.
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Observation Model B Signal Model N
|
Frame 1 [ e = 2 S
|
' (B | = | coted NHN I RN =S
1 = Strobing 10 I ZPenod 2 B o
Frame M | [T — B 2 > s
Frame Integration = < > Veryfew (K)
Period Tg t t Z m | non-zero
I()?ser}:ed Periodic <Z <Z ; - elements
ntensity Signal i
=
C N unknowns || Periodic Signal b1 b2 Fourier Basis Sparse Basis Coeff
y = X X = B S
Observed Mixing matrix
low-frame rate — _— Fourier coeff. of the
video y - C B S - A S periodic signal ( Sparse )

Fig. 5: Observation model shows the capture process of the CSC vdiféeeent colors correspond to different frames and theabjn
shutter sequence is depicted using the presence or absémmoo Note that each frame uses a different binary suhisage. The signal
model illustrates the sparsity in the frequency spectrura périodic signal.

1) Sparsity enforcing reconstructionEstimating a spars Estimate
vector s (with K non-zero entries) that satisfigs= As + 7, fffgsjgr‘]‘i;taf'
can be formulated as afy optimization problem: - Structured sparse
1 reconstruction
. . M frames from Construct set Recover Fourier coeff.
(PO) : mlnHS”O s.t ||y - ASH? Se (6) coded strobing » S, of possible > s for every pixel by
camera Fourier coeff. solving BPDN
Although for generals this is a NP-hard problem, fok Recover Fourier coeff
sufficiently small the equivalence betweépn and ¢;-norm p—— s for every pixel by
arsity entorcin ;
[8] allows us to reformulate the problem as onefgfnorm (@) e mnatriction” solving BPDN
minimization, which is a convex program with very efficit 0.8
H o | |
algorithms [12][8][2]. 0.7 Strrlgtlzntjrescliggp?arsny
06l Sparsity enforcing ||
PV minllslli st fly-Asllz<e (D) ,M, /«\, Q N |
0.4 ‘3‘/ B
The parametek allows for the variation in the modelir 03l i

of signal’s sparsity and/or noise in the observed frame:
practice, it is set to a fraction of captured signal ent

)
N
=

(e.g.,e = 0.03||y||2) and is dictated by the prior knowled 01 1
about camera noise in general and the extent of periodi€ 0 ——30 540 s:0  s80 570 Séo 590
the captured phenomenon. An interior point implemente Tim e

(BPDN) of (P1) is used to accurately solve fer Instead, Fig. 6: (a) Overview of structured sparse and sparsity enforcing
in most experiments in this paper, at the cost of mindgconstruction algorithms (b) Five periods of a noisy (SNR=B)
degradation in performance we use CoSaMP [26], a fasRgriodic signalz (P = 14 units). Signal recovered by structured and
greedy algorithm to solve (P0). Both (P0) and (P1) do n[ormal sparsity enforcing reconstruction are also shown.

take into account the structure in the sparse coefficients of

the periodic signal. By additionally enforcing structurfetioe

sparse coefficients, we achieve robustness in recovery of the(pStmctmed) . min|s||o s.t (8)

periodic signal. lly — As|la < e and

2) Structured sparse reconstructionWe recall that nonZero(s) € Syrr for somefy € [0, faras]-
periodic/quasi-periodic signals are (a) sparse in theiEoba-

sis and (b) if the period i€ = 1/ fp, the only frequency con- where nonZero(s) is a set containing all the non-zero el-
tent the signal has is in the small bands at the harmgifigs ements in the reconstructed Since the extent of quasi-
4 an integer. Often, the perioR is not known a priori. If the periodicity is not known a priori, the band fg is chosen
period is known or can be estimated from the dgtéhen for safely large and the non-zero coefficients continue to remai
a hypothesized fundamental frequengy, we can construct sparse in the se$ ;. Intuitively, problem Psyycturea gives

a setSyy with basis element§j fg — Afu , jfu + Afu), a better sparse solution compared to (P0O) since the non-zero
for j € {—Q,..0,1,...,Q} such that all the sparse Fouriercoefficients are searched over a smaller$gt. An example
coefficients will lie in this smaller set. Now the problem §P0Oof a periodic signal and its recovery usisparsity enforcing
can instead be reformulated as (P1) andstructured sparsityare shown in Figure 6(b). The
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40

70
recovery usingPsi uciurea 1S €xact whereas (PO) fails t ——SNR = 50d8 (a) — (b)
H —SNR = 40dB N
recover the high-frequency components. * —— | nereesne

SNR = 30dB
—SNR = 20dB

@
3

quasi-
periodicity

@
S

The restatement of the problem provides two significant
vantages. Firstly, it reduces the problem search spaceeof
original ¢y, formulation. To solve the originaly formulation,
one has to search ov8ICk sets. For example, if we observ

a signal for5 seconds atl ms resolution, thenV is 5000 ™ = G  me s Twe UTUm L Ewe T
and YCk is prohibitively large (0*'2 for K = P = " "

100). Secondly, this formulation implicitly enforces the gisas F19- 7: Identifying the fundamental frequencf. Output SNR
perodicy of the recovered signal and this exta conatral 11 1+ 8% 1 peted sganet potneszed fdaneria
allows us to solve for the unknown quasi-periodic signahWitine ' |ast peak occurs afy = 165 (= ). (b) Plot of SNR with
far fewer measurements than would otherwise be possibke. Marying level of quasi-periodicity.

type of algorithms which exploit further statistical sttuie in

the support of the sparse coefficients come under modetibadelP) [10]. Since the location of th&® non-zeros of the sparse
compressive sensing [3]. vector s which generates the observatignis not known

a priori, RIP demands that all sub-matrices Afwith 2K
3) Knowledge of fundamental frequency: Structured sparse o
columns have a low condition number. In other words, every

reconstruction performs better over a larger range of upsanm. _ . -
. . .. possible restriction o2 K columns are nearly orthonormal and
pling factors and since the structure of non-zero coeffisien

dependent on fundamental frequenfy, we estimate it first hence isometric. Evaluating RIP for a matrix is a combinator
P q ' " problem since it involves checking the condition numberlbf a

Identification of fundamental frequency: For both periodic ~Cax submatrices.
and quasi-periodic signals we solve a sequence of leastaq
problems to identify the fundamental frequengy. For a
hypothesized fundamental frequenty, we build a setS¢y
with only the frequencieg fy (for both periodic and quasi-
periodic signals). Truncated matrid;y is constructed by
retaining only the columns with indices if¢y. Non-zero
coefficientss¢y are then estimated by solving the equatio
y = Arusym in aleast-squares sense. We are interesteg;in
which has a small reconstruction erfy — 37| (or largest
output SNR) wherg sy = Asussy. If fp is the fundamental

N=2310, P=14
=22

IS
S

\ N=2310,P=14
True fund. U=22
freq. SNR=30dB

True fund.
freq

W
S

N
S}

SNR in dB of coded strobing signal y
SNR in dB of coded strobing signal y

Lfb\lternately, matrix A satisfies RIP if every row ofC is
incoherent with every column aB. In other words, no row

of C' can be sparsely represented by columnd3ofTropp et

al. [35] showed in a general setting that if the code matrix
C is drawn from a IID Rademacher distribution, the resulting
mixing matrix A satisfies RIP with a high probability. It must
Be noted that a modulation matriX with entries ‘+1’, -1’

is implementable but would involve using a beam splitter and
two cameras in place of one. Due to ease of implementation

' . (details in section 1V), for modulation we use a binary ‘1’,
frequency, then all the setéy;, wherefy is a factor offp, —.." 4 matrix ¢ as described in section II-C1. For a given

will provide a good fit to the observed signal Hence, the . . .
plot of output SNR has multiple peaks corresponding to ttfégnal lengthAV" and an upsampling factdr” we would like

good fits. From these peaks we pick the one with larggstin o p'Ck. a bllnary 1, "0" code which resuilts in mixing matrix

) . ; A, optimal in the sense of RIP.
Figure 7, we show results of experiments on synthetic detasé
under two scenarios: noisy signal and quasi-periodicitg. VWote that the sparsity of quasi-periodic signals is stnariu
note that even when (a) the signal is noisy and (b) when thad the non-zero elements occur at regular intervals. Hence
guasi-periodicity of the signal increases, the last peathén unlike the general setting, RIP should be satisfied and eval-
SNR plot occurs at fundamental frequengy. We generate uated over only a select subset of columns. Since the fun-
quasi-periodic signals from periodic signals by warping thdamental frequencyp of the signal is not known a priori, it
time variable. Note that, solving a least squares problem feuffices if the isometry is evaluated over a sequence of cestri
a hypothesized fundamental frequengy is equivalent to A corresponding to hypothesized fundamental frequefgy
solving Pstryctured With Afy = 0. Setting Afy = 0 eases Hence, for a giverlV andU, a code matrixC which results in
the process of finding the fundamental frequency by avoidisgnallest condition number over all the sequence of matrices
the need to set the paramet&if;; appropriate for both the A is desired. In practice, such@ is sub-optimally found by
captured signal angfi. This is especially useful for quasi-randomly generating the binary codes tens of thousand times
periodic signals where a priori knowledge of quasi-pedgi and picking the best one.
is not available.

Compared to a normal camera, CSC blocks half the light
I11.DESIGN ANALYSIS

. . ) L but captures all the frequency content of the periodic digna
In this section, we analyze important design issues and g b q y b 9

bett derstandi fth ¢ f coded strobi e sinc response of the box filter of a normal camera
a betier understanding of the performance ot coded Sobiigy \ates the harmonics near its zeros as well as the higher
method through experiments on synthetic examples.

frequencies as shown in Figure 2(b). To avoid the attenomatio
A. Optimal code for coded strobing of harmonics, the frame duration of the camera has to be
Theoretically optimal code: The optimization problems (6) changed appropriately. But, this is undesirable since most
and (7) give unique and exact solutions provided the undeameras come with a discrete set of frame rates. Moreover, it
determined matrix4 satisfies theestricted isometry property is hard to have a priori knowledge of the signal’s period.sThi



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

(@) Sinusoid (x(t)) with period P (@) Sinusoid of frequency f
) T . . ‘ .
AN/ } VARV o v ey -
(b) Modulate the sinusoid with a random binary code (r( 1)) (b) Random binary code has frequency components through out the spectrum

OO0 IN NAO IO e AN AN

™ 0 Tiax f
(c) Sinusoid f 5 has a unique signature from the code’s spectrum in the sinc's

(c) Box filter applied to the modulated sinusoid passband

Toox = Trrame

NV ‘

(d) Modulated and filtered sinusoid sampled every T game-

Purple = Red + Blue

AT VAR VAR G f

.M (d) Unique signature of the sinusoid (  purple ) is attenuated by the sinc response and
then shifted due to sampling every T .- Due to modulation, no sinusoid is
completely attenuated.

P | /‘/\/V\/\’\
(e) Coded Strobing — In every exposure duration differen  t linear combinations of - fyax 0 frax f
the underlying periodic signal are observed (e) Coded Strobing: Measure linear combinations of a pe  riodic signal's
harmonics. Each harmonic’s unique signature helps i n recovering them by
enforcing sparsity.
P o
Coded strobing is independent of the frequency of t he underlying periodic | A A |

signal. Light throughput is on an average 50% which is significantly greater - fvax 4fp 2fp o 0 fp=1/P 2f, 4 fuax f

ron vadionalsuobing | easureLinearcompiatns = sparsty Entrsing Reconsucton_|

Fig. 8: Time domain (Left) and corresponding frequency domainh@ignderstanding of CSC. Shown in (a) is a single sinusaig(q) &
(d) show the effect of coded strobing capture on the sinuge)dcoded strobing capture of multiple sinusoids is singplinear combination
of the sinusoids.

problem is entirely avoided by modulating the incoming sign signal length is fixed taV = 2000 units. The advantage of
with a pseudo-random binary sequence. Shown in Figure 8stsuctured sparse@econstruction is apparent from comparing
the temporal and frequency domain visualization of thectffeblue and red plots. The advantage of CSC over normal camera
of CSC on a single harmonic. Modulation with a pseud@an be seen by comparing blue and black plots. Note that the
random binary code spreads the harmonic across the spectrmommal camera performs poorly when the upsampling factor
Thus, every harmonic irrespective of its position avoids thJ is a multiple of the periodP.

attenuation, the sinc response causes.

. . . B. Experiments on a synthetic animation
We perform numerical experiments to show the effectlvenez?
3

of CSC (binary code) over the normal camera (all ‘1’ code Ve perform experiments on a synthetic animation of a fractal

Shown in Table | are the comparison of the largest and snhall show the efficacy of our approach. We alsz_) analyze .the
condition numbers of the matrid arising in CSC and normal performance of the algorithm under various noisy scenarios

camera. For a given signal lengith = 5000 and upsampling We assume that at evedy = 1 ms, a fr.am_e of the_ anlmf’;\tlon
factor U = 25 (the second column in Table 1), we vary thdS being observed and that the animation is repetitive Witk

period P and generate different matricédor both CSC and 25 ms Q5 di_stinct images in the fractal). Two su_ch frames are
normal camera. The largest condition numbem (x 10'9) shown in Figure 10(a). A normal camera runningfat= 25

of mixing matrix A of a normal camera occurs for signagIOS wil integrat§40 frame§ of the animation into a single
of period P = 75. Similarly, the smallest condition number rame, resulting n blurred images. TWO Images frombaips .
occurs forP = 67. On the other hand, the mixing matrik video are shown in (b). By performing amplitude modulation
of CSC has significantly lower maxir’num @ = 9) and at the shutter, as described in 11-C1, the CSC obtains frames
minimum (at P = 67) condition numbers. Note that theat_ the same rate as th_at of the normal camefafps) but .
largest and smallest condition number of CSC matrides with the images encoding the temporal movement occurring

across different upsampling factors U are significantly lfena during the integration process .Of the camera sensor. Two
compared to those of normal camera matrices. This indica{ ynes from the.CSC are shownin (c)..Note that in images (b)
that when the period of the signal is not known a priori, it i ©) g_nd also IMages in other expenments we re_scaled the
prudent to use CSC over normal camera. Intensities approprl_ately for better display. For our empe_nt,

we observe the animation férseconds §/ = 5000) resulting
Performance evaluation:We perform simulations on periodicin M = 125 frames. From thesd25 frames we recover
signals to compare the performancespfarsity enforcingand frequency content of the periodic signal being observed by
structured sparseeconstruction algorithms on CSC framesgnforcing sparsity in reconstruction as described in IV
structured sparseeconstruction on normal camera frames ancbmparestructured sparseeconstruction on normal camera
traditional strobing. SNR plots of the reconstructed signfames,normal sparseand structured sparseeconstruction
using the four approaches for varying periéd upsampling on CSC frames and the results are shown in (d),(e) and (f)
factor U and noise level iny are shown in Figure 9. The respectively. It is important to modulate the scene with a
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Condition Number « (Period P) | U =25 U =40 U =47 U =55 U =63 U =91

NC: largest 1.8 x 10" (75) | 8.6 x 10%2 (5) | 6.1 x 1032 (47) | 4.5 x 1055 (95) | 3.4 x 105% (90) | 6.5 x 10%® (70)
CSC: largest 1.3 x 103 (9) 1.4 x 107 (7) | 6.0 x 103 (8) 2.1 x10* (19) | 8.1 x 102 (27) | 2.4 x 103 (7)
NC: smallest 5.9 x 102 (67) | 8.4 x 10 (63) | 1.5 x 10° (54) 2.7 x 102 (92) 1.5 x 103 (80) 1.6 x 103 (55)
CSC: smallest 16.5 (67) 11.5 (94) 10.1 (98) 9.7 (90) 10.9 (77) 13.2 (53)

TABLE I: Table comparing the largest and smallest condition numloénsixing matrix A corresponding to normal (NC)
and coded strobing exposure (CSC).
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Fig. 9: Performance analysis of structured and normal sparsityormiig reconstruction for CSC and structured sparsity ecifmy
reconstruction for normal camera: (a) Reconstruction SNRtlse periodP increases. (b) Reconstruction SNR as upsampling faltor
increases. (c) Reconstruction SNR as the noisg i varied.

SNR of recons. signal vs input periodic signal SNR of recons. signal vs % of error in flutter

(b)

N
=

code to capture all frequencies and enforcing both spar
and structure in reconstruction ensures that the perioggias = ® @
is recovered accurately.

N
> N » © S

=

perform statistical analysis on the impact of two most commr
sources of noise in CSC and also analyze the influence
upsampling factor on reconstruction. We recover the sig ] B |
using structured sparsityenforcing reconstruction. First, we SNR in 0B of the input periodc signal Percentage of s fipped inthe fluter sequence
study the impact of sensor noise. Figure 11(a) shows SR of recons. Signal vo upampling factr g mating he fund. g, of e uasrperiode s
performance of our reconstruction with increasing noiselle (©
n. We fixed the upsampling factor & = 40 in these
simulations. The reconstruction SNR varies linearly wttle t
SNR of the input signal in accordance with compressi
sensing theory. The second most significant source of er
in a CSC are errors in the implementation of the code due
lack of synchronization between the shutter and the cam - = = — e T Do
These errors are modeled as bit-flips in the code. Figure)1: ypsamping factor yromeszedts A
shows the resilience of the coded strobing method to s Fig. 11: Performance analysis of CSC: (a) Reconstruction SNR
bit-flip errors. The upsampling factor is again fixed 4t as the observation noise increases. (b) Impact of bit-flipinary

Finally, we are interested in an understanding of how far tf§PoSure sequence. (c) Coded strobing camera capturescTe s
Ccurately upto an upsampling factér = 50. (d) ||y||/|ly — 9|

upsampling factor can be pushed without compromising on tg&ainst varying hypothesized fundamental frequeficy

reconstruction quality. Figure 11(c) shows the reconsimac

SNR as the upsampling factor increases. This indicatesthatspeed coded strobing camera frames. The simulated CSC
using structured sparsity enforcing reconstruction allgor, frames were used to reconstruct the high-speed video. Some
we can achieve large upsampling factors with a reasonabdguits of such experiments are reported in Figure 12.

fidelity of reconstruction. Using the procedure described i

previous section we estimate the fundamental frequency gssensor integration mechanism

N
w @

N

SNR in dB of reconstructed signal

Noise analysis and influence of upsampling factorWe é,o
S 30
&

(d)

N
@
S

N
S
3

N
a
=)

=
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3
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SNR in dB of reconstructed signal

@
S

SNR in dB of coded strobing signal y

fp =40 Hz (Figure 11(d)). We implement CSC for our experiments using an off-the-shelf
IV.EXPERIMENTAL PROTOTYPES Dragonfly2 camera from PointGrey Research [28], without
A. Hi-speed video camera modifications. The camera allows a triggering mode (Mugtipl

In order to study the feasibility and robustness of the psepo Exposure Pulse Width Mode- Mode 5) in which the sensor
camera, we first tested the approach using a high-speed vidgegrates the incoming light when the trigger is ‘1’ and is
camera. We used an expensil@)0 fps video camera, and inactive when the trigger is ‘0’. The trigger allows us expias
captured high-speed video. We had to use strong illuminatioontrol at a temporal resolution oft = 1 ms. For every
sources to light the scene and capture reasonably noise-frame we use a unique triggering sequence corresponding
high-speed frames. We then added several of these frates unique code. The camera outputs the integrated sensor
(according to the strobe code) in software to simulate loreadings as a frame after a specified number of integration
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(a) Originalfraimes s -3 ; Recon SNR
4 oo = 17.8dB %

(b) Normal-camera, captur Recon SNR
- o .’3 = G i 7.2dB -
@9 — ( ¢ ot e 1 1

0 (@)

Fig. 10: (a) Original frames of the fractal sequence which repeatrgv@ = 25 ms. (b) Frames captured by a normal 25 fps camera.
(c) Frames captured by a CSC running at 25 fps. (d) Framesnsttocted by enforcing structured sparsity on CSC framel.Fames
reconstructed by enforcing structured sparsity on normainera frames. (f) Frames reconstructed by enforcing sinsplrsity on CSC
frames. Overalls seconds § = 5000) of the sequence was observed to reconstruct it back fuliyabhpling factor was set df = 40

(M = 125) corresponding tat = 1 ms. Note that image intensities in (b) and (c) have been kedaappropriately for better display.

periods. Also, each integration period includes at its endlaryngoscopy usually allow the strobe light to be triggeved
period of abouB0 ms during which the camera processes theetrigger input. Stroboscopes that allow such an exteriggajer
integrated sensor readings into a frame. The huge benefitfaf the strobe can be easily retrofitted to be used as a CSC.
this setup is that it allows us to use an off-the-shelf cam@raThe PIC controller used to trigger the ferro-electric shutt
slow down high-speed events around us. On the other handn instead be used to synchronously trigger the strobe ligh
the hardware bottleneck in the camera restricts us to aperaf the stroboscope, thus converting a traditional strobpsc

at an effective frame rate d fps (100 ms) and a strobe rateto a coded stroboscope.

of 1000 strobes/second{ = 1 ms). V. EXPERIMENTAL RESULTS

C. Ferro-electric shutter To validate our design we conduct two kinds of experi-
The PointGrey Dragonfly2 provides exposure control wittents. In the first experiment, we capture high-speed videos
a time resolution ofl ms. Hence, it allows us a temporaland then generate CSC frames by appropriately adding
resolution of§t = 1 ms at recovery time. However, when thgrames of the high-speed video. In the second set of exper-
maximum linear velocity of the object is greater than 1 pixéiments we captured videos of fast moving objects with a
per ms, the reconstructed frames have motion blur. One daw-frame-rate CSC implemented using a Dragonfly2 video
avoid this problem with finer control over the exposure timgamera. Details about the project and implementation can
For example, a DisplayTech ferro-electric liquid crystaliger be found at the webpage http://www.umiacs.umd.edu/ dik-
provides an ON/OFF contrast ratio of abd@00 : 1, while pal/Projects/codedstrobing.html .

simultaneously providing very fast switching time of about )

250us. We built a prototype where the Dragonfly2 captures tife High-speed video of toothbrush _

frames at usuat5 fps and also triggers a PIC controller afte¥Ve capture a high-speedid(0 fps) video of a pulsating Crest
every frame which in turn flutters the ferro-electric shuttd0thbrush with quasi-periodic linear and oscillatory rons
with a new code at a specified temporal frequency. In o@f about 63 Hz. Figure 4(b) shows the frequency of the
experiment we set the temporal resolutiors@®s i.e. 2000 toothbrush as a function of time. Notice that even within a

strobes/second. short window of30 seconds, there are significant changes in
frequency. We render a00 fps, 20 fps, 10 fps CSC (i.e.,
D. Retrofitting commercial stroboscopes a frame duration ofl0 ms, 50 ms, 100 ms respectively) by

Another exciting alternative to implement CSC is to retrofiaidding appropriate high-speed video frames, but recartstru
commercial stroboscopes. Commercial stroboscopes usedhi@ moving toothbrush images at a resolution aofs as shown
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(a) Hi-speed capture at 1000fps

Recon SNR = 20.8dB Recon SNR = 16.4dB Recon SNR = 13. 6dB

Fig. 12: Reconstruction results of an oscillating toothbrush untteee different capture parameter&’): Images for simulation captured
by a 1000 fps high-speed camera at time instan¢est. and ¢z are shown in (a). The second row (b) shows a frame each froncatled
strobing capture (simulated from frames in (a)) at upsamglfactorsU = 10,50, and 100 respectively. Reconstruction at time instances
t1,t2 andts from the frames captured d&f = 10 are shown in first column of (c).

in Fig 12c. Frames of the CSC operating180, 20 and 10 mﬁ'ﬁ&?ﬂ?
fps U = 10, 50 and 100 respectively) are shown in Figure .
12(b). The fine bristles of the toothbrush add high frequen:
components because of texture variations. The bristles B KEEEEE
the circular head moved almost 6 pixels withinms. Thus

the captured images from the high-speed camera themsel
exhibited blur of about 6 pixels which can be seen in th_
recovered images. Notice that contrary to what it seems fiéf- %35 Ei?gr;ﬁgfﬁi?ﬁ V%Sgéstgfé‘;om?éusgr‘i’(‘;i(;?c“sp:;::gigﬁg\?\l‘;t L
the naked eye, the cwcglar hgad of the. tOOth.erSh dpes ggger reconstruction ov%r using a ngrmal F(’:amera.

actually complete a rotation. It just exhibits oscillatamption

of 45 degrees and we are able to see it from the high-spegd he visual quality of images, we corrupt the observed
reconstruction. imagesy with white noise having N R = 15 dB. The results
of the recovery without and with noise are shown in Figure 13.

?RNR = 20.8dB
> LE Y N

We compare frames recovered from CSC to those recovered
from a normal camera (by enforcing structured sparsity) to

R R= 13208 ~— illustrate the effectiveness of modulating the frames. ialr

ft X i ol : i % camera doesn’'t capture the motion in the bristles as well

X (Figure 14) and is saturated.

Fig. 13: Reconstruction results of toothbrush with upsamplingdact B, Mill-tool results using ferro-electric shutter

U = 10 without and with15 dB noise in (a) and (b) respectively. We use a Dragonfly2 camera with a ferro-electric shutter and
To test the robustness of coded strobing capture and recovespture images of a tool rotating in a mill. Since the tool can
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(a) 3000 RPM (b) 6000 RPM (c) 9000 RPM (d) 12000 RPM

Fig. 15: Tool bit rotating at different rpm captured using coded btrmy: Top row shows the coded images acquired by a PGR Dragbnfl
at 25 fps, with an external FLC shutter fluttering 2000 Hz. (a)-(d) Reconstruction results, 2000 fps (temporal resolutiodt = 500us),

of a tool bit rotating at3000, 6000, 9000 and 12000 rpm respectively. For better visualization, the tool wasnped with color prior to the
capture.

rotate at speeds as high #%00 rpm (200 Hz), to prevent blui
in reconstructed images we use the ferro-electric shutte
modulation with a temporal resolution 6f5 ms. The CSC
runs at25 fps @0 ms frame length) with the ferro-electr
shutter fluttering aR000 strobes/second. Shown in Figure
are the reconstructions ab00 fps (6t = 0.5 ms) of a tool

oded

(a) Frame from 10 fps
camera

(b) Frames reconstructed from|a 10 fps Dragonfly2 c
strobing camgra (U = 100 )

Fig. 16: Demonstration of CSC at upsampling factér= 100 using

rotating at3000, 6000, 9000 and 12000 rpm. Without a priori
knowledge of scene frequencies, we use the same sti
coding and the same software decoding procedure for the

Dragonfly2. (a) Captured image from 80 fps CSC (Dragonfly2).
(b)-(c) Two reconstructed frames. While the CSC captureéthaye
frame everyl00 ms, we obtain reconstructions with a temporal
resolution of1 ms.

tool rotating at different rpm. This shows that we can cap
any sequence of periodic motion with unknown period wit ) ) .
single pre-determined code. In contrast, in traditionaiting - High-speed video of a jog

prior knowledge of the period is necessary to strobe at th&ing frames from a high-speed5( fps) video of a person
appropriate frequency. Note that the reconstructed imétieeo jogging-in-place we simulate in computer the capture of the
tool rotating at3000 rpm is crisp (Figure 15(a)) and the image§cene using a normal camera and the CSC at upsampling
blur progressively as the rpm increases. Since the tempd@gtors of U = 25,50 and75. The coded frames from CSC
resolution of Dragonfly2 strobe i6.5 ms, the features on are used to reconstruct back the original high-speed fraiyes
the tool begin to blur at speeds as fast1a800 rpm (Figure enforcingstructured sparsityThe result of the reconstruction
15(d)). In fact, the linear velocity of the tool across theage Using frames from the CSC is contrasted with frames captured
plane is abouB3 pixels per ms (for12000 rpm), while the using a normal camera in Figure 17(a). At any given pixel, the

width of the tool is aboutl5 pixels. Therefore, the recoveredsignal is highly quasi-periodic since it is not a mechartycal
tool is blurred to about one-third its width ih5 ms. driven motion but our algorithm performs reasonably well in

capturing the scene. In Figure 17(b) we contrast the recon-

C. Toothbrush using Dragonfly2 camera struction at a pixel foi/ = 25, 50, and75.

We use a Dragonfly2 camera operating in Trigger Mode 5 to VI.BENEFITS AND LIMITATIONS
capture a coded sequence of the Crest toothbrush osdlllatin Benefits and advantages

;hetcatrﬁgra ﬁpaelrgggi a0 fpi lb(l;g we riconst_rml::t_ Videolngoded strobing allows three key advantages over traditiona
€ toothbrus ps U = ) as shown in Figure 'sﬁrobing: (i) signal to noise ratio (SNR) improvements due

Even though the camera acquires a_frame every 100 ms, ¢ eIight-efficiency, (i) no necessity for prior knowledgd o
reconstruction is at a temporal resolutioniahs. If we assume do

minant frequency, and (iii) the ability to capture scenes
that there ar_eL photons per ms, then each frame of the camefth multiple periodic phenomena with different fundamednt
would acquire around.5 x 100 x L photons. In comparison, frequencies.
each frame of a high-speed camera would accumulate
photons, while traditional strobing camera would accurteulaLight throughput: Light efficiency plays an important role if
L« fp/fs = 6.3L photons per frame. one cannot increase the brightness of external light seurce
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Normal camera Structured Knowledge of fundamental frequency: Unlike traditional
capture (a) sparse recover strobing, coded strobing can determine signal frequency in

post-capture, software only process. This allows for ggtng
applications such as simultaneous capture of multipleadsgn
with very different fundamental frequencies. Since the-pro
cessing is independent for each pixel, we can support scenes
with several independently periodic signals and captueenth
without a-priori knowledge of the frequency bands as shown
in Figure 18(a). Shown, in Figure 15 are the reconstructions

— Original signal obtained for the tool which was rotating at 3000,4500,6000
(b) ——Reconstructed signal: U=25 and 12000 rpm. In all these cases, the same coded shutter
0.6 Reconstructed signal: U=50 sequence was used at capture-time. Also, the reconstnuctio
——Reconstructed signal: U=75

algorithm can also eminently handle both periodic and quasi

05 periodic signals using the same framework.

Multiple periodic signals: Unlike traditional strobing, coded
strobing allows us to capture and recover scenes with nfeiltip
periodic motions with different fundamental frequenci€ke
capture in coded strobing doesn't rely on frequency of the
periodic motion being observed and the recovery of the $igna
at each pixel is independent of the other. This makes it ptessi

to capture a scene with periodic motions with different fand
mental frequency all at the same time using the same hardware
settings. The different motions are reconstructed indépsthy

by first estimating the respective fundamental frequenaies

Fig. 17: Frontal scene of a person jogging-in-place. (a) A framgnen reconstructing by enforcing structured sparsity.
captured by a normal camera (left) and one of the frames re®al

from coded strobing capture & = 25 (right). (b) Plot in time \ne perform experiments on an animation with two periodic

?r];g:ecgéx:é g‘?ggi\’r\]’éoggtirgn%nazl sggng(l) 21?1(31 iggnslc)tr:mfttehi motions with different fundamental frequencies. Shown in

low frequency parts of the signal are recovered well compacethe Figure 18(a) are few frames of the ani_mation with a rotating
high-frequency spikes. globe on the left and a horse galloping on the right. The

animation was created using frames of a rotating globe which
Let us consider the linear noise model (scene indepea@peats everp4 frames and frames of the classic galloping
dent) where the SNR of the captured image is given Morse which repeats everys frames. For simulation, we
LTExposure/Tgray, Where L is the average light intensity assume that a new frame of the animation is being observed
at a pixel andog.q, is a signal independent noise leveht a resolution ofit = 1 ms and we observe the animation
which includes effects of dark current, amplifier noise anfér a total time of4.8 seconds I = 4800). This makes the
A/D converter noise. For both traditional and coded strgbirperiod of the globe24 ms (fp = 41.667 Hz) and that of
cameras, the duration of the shortest exposure time shoulthérse15 ms (fp = 66.667 Hz). The scene is captured using
most bets = 1/(2fuma.)- In traditional strobing, this short g 25 fps (U = 40) camera and few of the captured CSC
exposuret; is repeated once every period of the signal, arflames are shown in (b). The reconstructed frames obtained
therefore the total exposure time in every frame is given yy enforcing structured sparsity are shown in (c). Prior to
Tstrobing = (1/2fmax)(fr/ fs). Since the total exposure timethe reconstruction of the scene at each pixel, fundamental
within a frame can be as large &% of the total frame frequencies of the different motions were estimated. Far on
duration for CSCTcoaea = 1/2fs. The decoding process inpixel on horse (marked blue in Figure 18(a)) and one pixel
coded strobing introduces additional noise, and this degodon the globe (marked red), the output SNIR/|/||y — 9]| is
noise factor isd = y/trace((AT A)~1)/M. Therefore, the shown as a function of hypothesized fundamental frequency
SNR gain of CSC as compared to traditional strobing is givef); in Figure 18(d). The fundamental frequency are accurately

0.4

0.3

0.2

0.1 .
500 1000 1500

> estimated a$6.667 Hz for the horse and1.667 Hz for the
SNRGain = SN Rcoded _ (LTCoded)/(dO') _ fMas g|obe_
SN Rstrobing (LTstrobing)/(7) dfp @) Ease of implementation: The previous benefits assume sig-

nificance because modern cameras, such as PointGrey Dragon-
For example, in the case of the tool spinning3ad0 rpm Fly2, allow coded strobing exposure and hence there is né nee
(or 50 Hz), this gain is201og(1000/(2 - 50)) = 20dB since for expensive hardware modifications. We transform this off
famax = 1000 Hz for strobe rate2000 strobes/second. Sothe-shelf camera instantly into2000 fps high-speed camera
coded strobing is a great alternative for light-limitedrsm@os using our sampling scheme. On the other hand, traditional
such as medical inspection in laryngoscopy (where patiesttobing has been extremely popular and successful beciuse
tissue burn is a concern) and long range imaging. its direct-view capability. Since our reconstruction aljom
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= Y | — .
* ’@ & ,,# * ’@ Estimating the fund. freq. of multiple quasi-period ic signals
= 300 ]

¢ Eeal® hedl® Eca

o H
(a) Original frames (b) Coded strobing, U=40 (c) Reconstructed frames

250 — Globe
——Horse

200

True fund.
150 freq.

100

a1
o

SNR in dB of coded strobing signal y

Fig. 18: Recovery of multiple periodic motion in a scene. (a) Pedaaients with different periods in the same scene. The scsecapiured
by CSC withU = 40 is shown in (b). The recovered frames are shown in (c). Shawd)iis the estimated fundamental frequency of globe
and horse at points marked red and blue. Note that the ladt pehoth globe and horse corresponds to the respective fuedéal frequency

of 41.667 Hz and66.667 Hz.
—-
E-
B. Artifacts and limitations

. . . Fig. 19: Coded strobing reconstructions exhibit blur when the
We address the three most dominant artifacts in our rfl'é'mporal resolutiordt is not small enough. Shown in (a) and (b) are

constructions: (&) Blur in the reconstructed images due #Q: same mill tool rotating at 12000 rpm and captured by alsro
time resolution, (b) temporal ringing introduced during- dewith §¢t = 0.5 ms anddt = 1 ms respectively. The reconstructions

convolution process, and (c) saturation due to specularity shown in the second and third column show that= 1 ms strobe

motion is not captured by the shortest exposure timé.6f °¢ @ A (b) | —Recovered signa: Unsaturated

33 pixels per millisecond. Hence, there is a blur of abtir

temporal resolution. It must also be noted here that whifdg. 20: (a) Ringing artifacts (in time) in the reconstructed signal
in the reconstructed signal due to saturation in the obsérsignal

any regularization in the reconstruction process (Fig@(@). signal recovered from saturatgchas temporal ringing. Since

at two spatially close pixels. Since the waveforms at thelk® Image. Typical cause of saturation in the captured inage

is not yet real-time, we can only provide a delayed viewin
of the signal. Table Il lists the most important charactass
of the various sampling methodologies presented.

——Recovered Signal:Pixel 2 0.8

Tk

0.2

rate is insufficient and leads to blur in the reconstructions
Blur: As shown in Fig 19, we observe blur in the reconstructed
images when the higher spatio-temporal frequency of s — Griginal SignalPixel ) e
Recovered signal: Saturated

ms. Notice that the blur wheft = 0.5 ms is less compare .
to whendét = 1 ms. The width of the tool is abouts pixels os /\
and the linear velocity of the tool across the image plan °-4/ j |

\ \

LN &
pixels in the reconstructed image whéh= 0.5 ms and33 o
pixels whendt = 1 ms. Note that this blur is not a result ~ ° 0
the reconstructlon process and IS dependent On the Sm 1610 1620 1630 _1[]6[:(; 1650 1660 1670 1680 500 510 520 T?;% 540 550 560
12000 rpm (corresponding t®00 Hz) is significantly less at two pixels separated by units in Fig 12(c). Also shown are the
compared to the000 Hz temporal resolution offered by codednput signals. Note that artifacts in reconstruction (im&) manifests
strobing, the blur is a result of visual texture on the tool. itself as artifacts in space in the reconstructed image. Abijfacts
Temporal ringing: Temporal ringing is introduced in the¥
reconstructed images during the reconstruction (decanvol . . -
tion) process. For simplicity, we presented results witho Fructed signal. In Figure 20(b) we can see that the periodic
Note that in our algorithm reconstruction is per pixel and threcons?ruc’qon Is independent for each pixel, the eff_ect of
ringing is over time. Figure 20(a) shows temporal ringingzturatlon is local and does not affect the rest of the pixels
ue to specularities in the observed scene. Speculatitias,

are not saturated, do not pose a problem and are reconstructe
as well as other regions.

two pixels are related (typically phase shifted), the terapo
ringing appears as spatial ringing in the reconstructedjena
(Figure 16(b)). Either data independent Tikhonov regaéari
tion or data dependent regularization (like priors) can sedu
to improve the visual quality of the reconstructed videos.

VII.D ISCUSSION ANDCONCLUSION
A. Spatial redundancy
Saturation: Saturation in the captured signatesults in sharp In this paper, we discussed a method called coded strobing
edges which in turn leads to ringing artifacts in the reconhat exploits the temporal redundancy of periodic signal$ a
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[ Method | Sampling Rate | Best Scenario | Benefits | Limitations |
High-speed (Nyquist)] 2 fo Scene withinfo Robust Costly
Strobing (band-pass)| Lower than fy Periodic and Brightly lit | Direct-view Linear search
Non-uniform Lower than fo Brightly it No aliasing Not robust to noise|
Coded Strobing Lower than fo Periodic Light-efficient | No direct-view
TABLE II: Table showing relative benefits and appropriate samplingofesented methods.
Al — Signal 11| ACKNOWLEDGEMENTS
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1610 1620 1630 1640 1650 1660 1670 1680
Time 1]
Fig. 21: The waveforms in a neighborhood are highly similar and
hence the information is redundant. Shown are the wavefafms 2]
pixels at the corners of & x 3 neighborhood. The waveforms are

displaced vertically for better visualization. Gl

in particular, their sparsity in the Fourier domain in order
capture high-speed periodic and quasi-periodic signate T
analysis and the reconstruction algorithms presentedidons
ered the data at every pixel as independent. In realitycadja
pixels have temporal profiles that are very similar. In gaiftr
(see Figure 21), the temporal profiles of adjacent pixels aré]
related to each other via a phase shift which depends upon
the local speed and direction of motion of scene features,
This redundancy is currently not being exploited in our entr
framework. We are currently exploring extensions of the CSC
that explicitly model this relationship and use these aamsts [
during the recovery process.

(4]

B. Spatio-temporal resolution trade-off (8]
The focus of this paper, was on the class of periodic and guasi
periodic signals. One interesting and exciting avenuedare (g
work is to extend the application of the CSC to a wider class
of high-speed videos such as high-speed videos of statigtic [10]
regular dynamical events (e.g., waterfall, fluid dynamitsg e
and finally to arbitrary high-speed events such as bursting]
balloons etc. One alternative we are pursuing in this regard
is considering a scenario which allows for spatio-temporgag]
resolution trade-offs, i.e., use a higher resolution CS@riaer

to reconstruct lower resolution high-speed videos of eabjt [13]
scenes. The spatio-temporal regularity and redundandis ava
able in such videos needs to be efficiently exploited in order
to achieve this end. [t

C. Conclusions

In this paper, we present a simple, yet powerful samplir{b's]
scheme and reconstruction algorithm that turns a normalovid
camera into a high-speed video camera for periodic signals.
We show that the current design has many benefits over
traditional approaches and show a working prototype that [{§]
able to turn an off-the-shel25 fps PointGrey Dragonfly2
camera into 2000 fps high-speed camera.

] M. Ben-Ezra and S. Nayar.
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