
CH2: A Hybrid Operational/Analytical

Processing Benchmark for NoSQL

Michael Carey(B), Dmitry Lychagin, M. Muralikrishna, Vijay Sarathy,
and Till Westmann

Couchbase, Inc., Santa Clara, CA, USA
mike.carey@couchbase.com

Abstract. Database systems with hybrid data management support,
referred to as HTAP or HOAP architectures, are gaining popularity.
These first appeared in the relational world, and the CH-benCHmark
(CH) was proposed in 2011 to evaluate such relational systems. Today,
one finds NoSQL database systems gaining adoption for new applica-
tions. In this paper we present CH2, a new benchmark – created with
CH as its starting point – aimed at evaluating hybrid data platforms in
the document data management world. Like CH, CH2 borrows from
and extends both TPC-C and TPC-H. Differences from CH include
a document-oriented schema, a data generation scheme that creates a
TPC-H-like history, and a “do over” of the CH queries that is more in
line with TPC-H. This paper details shortcomings that we uncovered
in CH, the design of CH2, and preliminary results from running CH2
against Couchbase Server 7.0 (whose Query and Analytics services pro-
vide HOAP support for NoSQL data). The results provide insight into the
performance isolation and horizontal scalability properties of Couchbase
Server 7.0 as well as demonstrating the efficacy of CH2 for evaluating
such platforms.

Keywords: Benchmarks · NoSQL · HTAP · HOAP

1 Introduction

In today’s online world, organizations are becoming ever more reliant on real-
time information and its analysis to steer and optimize their operations. His-
torically, operational (OLTP) and analytical (OLAP) processing were separate
activities, with each running on their own separate infrastructures; periodic ETL
processes served to bridge these worlds in the overall architecture of a typical
enterprise [13]. Today, database system architectures with hybrid data manage-
ment support – referred to as HTAP (Hybrid Transactional/Analytical Process-
ing [24]) or HOAP (Hybrid Operational/Analytical Processing [1]) support – are
appearing on the scene and gaining traction in both industry and research in
order to address the pressing need for timely analytics. Originating in the rela-
tional world, hybrid platforms are commonly linked to other concurrent high-end

c© Springer Nature Switzerland AG 2022
R. Nambiar and M. Poess (Eds.): TPCTC 2021, LNCS 13169, pp. 62–80, 2022.
https://doi.org/10.1007/978-3-030-94437-7_5

CH2: A Hybrid Operational/Analytical Processing Benchmark for NoSQL 63

server technology trends; columnar storage and main-memory data management
are two of the technologies that are often assumed to be part of that picture.

While relational databases still dominate the enterprise IT landscape, today’s
applications demand support for millions of interactions with end-users via the
Web and mobile devices. Traditional relational database systems were built to
target thousands of users. Designed for strict consistency and data control, rela-
tional database systems tend to fall short of the agility, flexibility, and scalability
demands of today’s new applications. This has led to the emergence of the new
generation of data management systems known as NoSQL systems [21]; our
focus here will be on its sub-category of document databases. Examples of such
systems include Couchbase Server [3] and MongoDB [8]. NoSQL systems aim
to scale incrementally and horizontally on clusters of computers as well as to
reduce the mismatch between the applications’ view of data and its persisted
view, thus enabling the players – ranging from application developers to DBAs
and data analysts as well – to work with their data in its natural form.

Given this state of affairs, a natural question arises: Is the NoSQL world
HOAPless1, particularly document databases? The answer is no, as the need
to combine operational and analytical capabilities for timely analytics is very
much required in the NoSQL world as well. Thus, NoSQL vendors are beginning
to focus on providing their enterprise customers with HOAP and are including
HOAP-ful messages in their marketing materials. One such vendor, one whose
document data management technology we will benchmark here, is Couchbase;
the Couchbase Server platform introduced HOAP with its addition of Couch-
base Analytics [2]. Our benchmark is not specific to Couchbase, however. It
can be implemented and executed on HOAP-ful configurations of other NoSQL
databases as well – and that, in fact, is the point of this paper: We propose
a new benchmark for evaluating HOAPfulness in the world of document data
management.

In the relational world, the problem of evaluating platform performance
under hybrid OLTP/OLAP workloads has attracted attention in recent years.
One example is the mixed workload CH-benCHmark [5] (CH) proposed by a
stellar collection of database query processing and performance experts and now
used by others to assess the performance of new HTAP systems [20]. The same
is not yet true in the NoSQL world; there has yet to be a benchmark proposed
to assess HOAP for scalable NoSQL systems. This paper proposes such a bench-
mark based on extending and improving CH in several important ways.

The remainder of this paper is organized as follows: Sect. 2 briefly surveys
related work on HTAP systems as well as past SQL and NoSQL benchmarks.
Section 3, the main event, describes our CH2 proposal for a HOAP-for-NoSQL
benchmark. As an example of a HOAPful document store, Sect. 4 provides
an overview of Couchbase Server and its approach to supporting HOAP. As
a demonstration of CH2’s potential to serve as an effective hybrid workload
benchmark for NoSQL systems, Sect. 5 presents a first collection of results from

1 We prefer the term HOAP over HTAP in the context of NoSQL, as it seems less tied
to strict ACID transactions and columnar, main-memory technology presumptions.

64 M. Carey et al.

running CH2 on a Couchbase server cluster in AWS under different service con-
figurations. Section 6 summarizes the CH2 proposal and initial results.

2 Related Work

We briefly review related work on HTAP/HOAP and database benchmarks.

2.1 HTAP (HOAP)

As mentioned in the Introduction, the relational database world has witnessed an
emergence of HTAP capabilities in a number of vendors’ systems in recent years
as well as growing research interest related to HTAP. Notable HTAP offerings
today include such systems as HyPer [9] (born in research, but now owned by
and used in Tableau) and SAP-HANA [12]. Other significant commercial rela-
tional HTAP offerings include DB2 BLU from IBM [19], Oracle’s dual-engine
main-memory database solution [10], and the real-time analytical processing
capabilities now found in Microsoft’s SQL Server [11]. As an example on the
research side, a recent paper introduced and explored the concept of adaptive
HTAP and how to manage the core and memory resources of a powerful (scale-
up) many-core NUMA server running a mixed main-memory workload [20].

Stepping back, one sees that R&D in the relational HTAP world has focused
heavily on in-memory scenarios for relatively “small” operational databases. Now
that multi-core servers with very large main memories are available, and given
the degree of compression enabled by columnar storage, it is possible for main
memory to hold much or even all of an enterprises’ operational business data. As
a result, most current HTAP database offerings rely on main-memory database
technology. And, as would be expected, the focus of these offerings is on single-
server architectures – i.e., on scaling up rather than scaling out.

In contrast, providing HOAP for scalable NoSQL document databases brings
different problems that require different solutions. To scale document databases
while providing HOAP, the focus needs to be on Big Data – and flexible, schema-
less data. In addition, NoSQL systems and applications tend to have different
transactional consistency needs [21]. Data timeliness is equally important in the
NoSQL world, but there is less of a need to focus on the reduction or elimination
of ACID transaction interference and more of a need to focus on the successful
provision of performance isolation at the level of a cluster’s physical resources.

2.2 Benchmarks

Many benchmarks have been developed to evaluate the performance of relational
database systems under various application scenarios [7]. The most notable are
the TPC-x benchmarks developed by the Transaction Processing Council (TPC).
These include TPC-C [18] for a typical transaction processing workload as well
as TPC-H [16] and TPC-DS [17] for decision support and analytics. There has
also been a variety of benchmarks proposed and employed in the NoSQL world,
including YCSB [6] for key-value store workloads, BigFUN [14] for Big Data

CH2: A Hybrid Operational/Analytical Processing Benchmark for NoSQL 65

management platform operations’ performance, MongoDB’s recent adaptation
of TPC-C to evaluate NoSQL transactional performance [8], and a philosophi-
cally similar NoSQL adaptation [15] of TPC-H to evaluate Big Data analytics
performance, to name a handful of the NoSQL and Big Data benchmarks.

To evaluate HTAP systems, a particularly noteworthy effort was the pro-
posal of the mixed workload CH-benCHmark [5]. This benchmark resulted from
a Dagstuhl workshop attended by a group of database query processing and
performance experts drawn from a variety of companies and universities. The
CH-benCHmark combines ideas and operations from the TPC-C and TPC-H
benchmarks in order to bridge the gap between the established single-workload
benchmark suites of TPC-C, for OLTP, and TPC-H, for OLAP, thereby provid-
ing a foundation for mixed workload performance evaluation. The original paper
included first results from applying the benchmark to PostgreSQL with all data
being in memory and a read-committed isolation level. The CH-benCHmark
appears to have gained some traction for HTAP use, having recently been used
to assess the performance of a new HTAP system and its scheduling ideas [20].

To the best of our knowledge, our paper represents the first mixed work-
load benchmark proposed to assess HOAP for scalable NoSQL systems. A first
exploratory step was reported in [23], where performance isolation in Couchbase
Server (6.6) was investigated by mixing concurrent TPC-C NewOrder transac-
tions with a stream of join/group-by/top-K queries. The effort reported here
was suggested as future work at the end of that paper.

3 CH2 Benchmark Design

When we undertook the effort reported here, our goal was to explore several key
aspects of NoSQL platforms’ support for HOAP, including (1) their effectiveness
at providing performance isolation between the OLTP and OLAP components
of a mixed workload, and (2) the effectiveness of their query engines for han-
dling OLAP-style queries. These were of particular interest because most NoSQL
systems were designed to scale out horizontally on shared-nothing clusters and
their initial design points for query processing have been OLTP-oriented, i.e.,
they were generally built to support high-concurrency/low-latency operational
workloads as opposed to more complex data analytics.

Our first instinct was to design a new benchmark involving a mix of opera-
tional and analytical operations. Soon, with a healthy appreciation of the diffi-
culty of coming up with a new schema, data, and workload, we found ourselves
attracted to what MongoDB did in extending TPC-C to evaluate their new
NoSQL transactional support [8]; in a project of our own we had followed a
similar path by extending TPC-H for a comparative study of Big Data platform
performance [15]. We decided to follow MongoDB’s path for the operational side
of the workload but to design our own analytical queries over the TPC-C schema
for the analytical side of the mix in [23]. We then came across the mixed workload
CH-benCHmark [5] for relational systems and were pleased to find that it took
a similar approach. We then decided that the next step should be to “lightly”
adapt the original CH-benCHmark to the document database world, but we

66 M. Carey et al.

quickly encountered a number of issues that required more extensive changes.
The rest of this section details CH2, the benchmark proposal that we landed
on by attempting to adapt the original CH-benCHmark (henceforth referred to
simply as CH) to the NoSQL document world.

Fig. 1. TPC-C schema (NoSQL modification highlighted)

3.1 Benchmark Schema

The bulk of the schema for CH2 is MongoDB’s adaptation [8] of the TPC-C
schema. Figure 1 summarizes the 9 tables and relationships of the standard rela-
tional TPC-C schema. This schema models businesses which “must manage,
sell, or distribute products or services” [18] and it follows a continuous scaling
model. The benchmark database size is scalable based on the number of ware-
houses (W), and the figure includes the scaling factors for each of the tables in
the TPC-C schema. MongoDB’s NoSQL adaptation of this schema involves 8
collections instead of 9, because in a non-1NF-limited NoSQL world, an order
would naturally embed its line items as nested data. Figure 1 highlights the
affected region of the TPC-C schema. No other nesting changes were made to
the TPC-C schema, as in our view doing so would involve over-nesting and would
be a poor database design for such use cases [8,15].

In addition to adopting the nested order modification and TPC-C’s scaling
rules, the CH2 benchmark adopts CH’s approach of borrowing 3 TPC-H tables
as additional CH2 collections to support the adaptation of TPC-H’s queries for
the analytical side of a mixed workload. Following CH, CH2 borrows Supplier
and Region, both unchanged, from the TPC-H schema, along with a slightly
modified version of Nation. Supplier has a fixed number of entries (10,000), and
an entry in Stock is associated with its Supplier through the CH relationship
Stock.s i id × Stock.s w id mod 10,000 = Supplier.su suppkey. A Customer’s
Nation is identified by the first character of the field Customer.c state. In TPC-C
this character can have 62 different values (upper-case letters, lower-case letters
and numbers), so CH chose 62 nations to populate Nation (vs. 25 nations in
TPC-H) and CH2 follows suit. The Nation.n nationkey values are chosen so
that their associated ASCII values are letters or numbers. Region then contains
the five regions of these nations. Linkages between the new relations are modeled
via the foreign key fields Nation.n regionkey and Supplier.su nationkey.

CH2: A Hybrid Operational/Analytical Processing Benchmark for NoSQL 67

Table 1. CH2 collections and example sizes with 1,000 warehouses.

Collection Collection size (W = 1000)

Warehouse 1,000

District 10,000

History 30,000,000

NewOrder 9,000,000

Stock 100,000,000

Customer 30,000,000

Orders (orderline) 30,000,000 (300,000,000)

Item 100,000

Supplier 10,000

Nation 62

Region 5

Table 1 lists the CH2 collections and gives an example of their scaling by
listing their 1,000-warehouse cardinalities. Orders are nested with an average of
10 Orderline items in each. The line separates the modified TPC-C collections
(top) from the three CH (and CH2) additions (bottom).

3.2 Benchmark Data

To populate the CH2 database, we first tried using the generator from the origi-
nal CH effort, but found that it had significant problems – being literally based
on TPC-C’s data generation rules – in terms of generating data for the analyt-
ical queries. Its main problem can be described as “TPC-C’s big bang” – all of
the date fields in the initial CH database had the current date (i.e., the date
when the benchmark is run) as their value, so there were no date ranges to be
found in the data. (TPC-H queries are designed to operate on a 7-year history.)
Thus, while CH’s queries were purportedly based on TPC-H, many of the CH
query predicates returned either nothing, everything, or something run-date-
dependent as a result. In a nutshell, the CH queries in their original form were
not meaningful when combined with the CH data generator’s data; a “do-over”
was necessary.

To address the aforementioned problems, we created a new database genera-
tor by modifying the TPC-C data generator from the publicly available py-tpcc
benchmarking package from CMU to (i) generate the orders with nested items
(the MongoDB NoSQL change) and (ii) carefully control the values generated for
the fields used in query predicates on the analytical side of the benchmark (the
CH2 data/query change). Regarding (ii), we introduced a RUN DATE parame-
ter to seed the data generation; RUN DATE then leads to derivative parameters
START DATE and END DATE that are similar to the date range in TPC-H.
RUN DATE controls the historical characteristics of the data by determining
when the benchmark’s past should end and when the operational workload’s life

68 M. Carey et al.

should begin, i.e., START DATE = RUN DATE - 7 years and END DATE =
RUN DATE - 1 day. In the process, we also fixed the dates in the data gener-
ator based on TPC-H, added the Supplier, Nation, and Region collections (as
a change relative to py-tpcc, ported from the CH generator), and then (as will
discuss shortly) fixed the date ranges and predicate ranges in the analytical work-
load’s queries to conform to the TPC-H predicate selectivities and the TPC-H
query business semantics. In all, the fields involved in these changes were: Cus-
tomer.c since, Orders.o entry d, Orders.ol.ol delivery d, History.h date, and also
Supplier.su nationkey (value generation changed to avoid skew).

3.3 Benchmark Operations

The operational workload of TPC-C models the transactions of a typical pro-
duction order processing system that works against this schema. Its transactions
are a specified mixture of five read-only and update-intensive business transac-
tions, namely NewOrder, Payment, OrderStatus, Delivery, and StockLevel. CH2,
like CH, uses TPC-C’s transaction mix as its operational workload. Also, like
TPC-C and CH, CH2’s performance reporting focuses on just one of the five
transactions from TPC-C, namely NewOrder. NewOrder represents a business
transaction that enters a new order with multiple nested orderlines into the
database. A NewOrder transaction touches most of the TPC-C schema’s tables
and consists of both read-only queries and updates. Details of all five TPC-C
transactions’ logic as well as the workload’s prescribed mix percentages can be
found in the official TPC-C specification [18]. One CH2 change that we made to
py-tpcc’s out-of-the-box TPC-C operation implementation was that we chopped
the Delivery operation, which does delivery processing for 10 orders, into 10
per-order transactions rather than grouping them as a single transaction. This
is closer to the implementation prescribed in the specification (see Sect. 2.7 in
[18]) and follows best practices for picking transaction boundaries [22]. Interest-
ingly, py-tpcc also deviates from the TPC-C specification in that the specification
states that Delivery should be handled as an asynchronous request. We did not
alter that aspect of the py-tpcc implementation, so CH2 is non-compliant (by
design) in that respect as it processes the Delivery operations synchronously.

CH2’s operational performance is reported, as for CH (and TPC-C), in terms
of the throughput and response times for the NewOrder operations.

3.4 Benchmark Queries

For the analytical side of CH2’s workload, we started with the 22 queries from
the original CH effort, which in turn were inspired by the 22 queries of TPC-H.
We then modified the CH queries one-by-one to operate meaningfully against
the historical CH2 data with TPC-H-like predicate selectivity characteristics.
This included replacing baked-in constants in predicates with controllable ran-
domly generated values and carefully inspecting and modifying query predicates
to yield a set of 22 queries that are much more aligned with TPC-H’s query char-
acteristics. (The full CH2 query set is at https://github.com/couchbaselabs/ch2
both in the code and in the Appendix of an extended version of this paper.) The

CH2: A Hybrid Operational/Analytical Processing Benchmark for NoSQL 69

select ol_number ,
sum(ol_quantity) as sum_qty ,
sum(ol_amount) as sum_amount ,
avg(ol_quantity) as avg_qty ,
avg(ol_amount) as avg_amount ,
count (*) as count_order
from orderline
where ol_delivery_d >

’2007-01-02 00:00:00.000000’

group by ol_number
order by ol_number

SELECT ol.ol_number ,
SUM(ol.ol_quantity) as sum_qty ,
SUM(ol.ol_amount) as sum_amount ,
AVG(ol.ol_quantity) as avg_qty ,
AVG(ol.ol_amount) as avg_amount ,
COUNT (*) as count_order
FROM orders o, o.o orderline ol
WHERE ol.ol_delivery_d >

DATE ADD STR(’[START DATE]’,
[DAYS],’day’)

GROUP BY ol.ol_number
ORDER BY ol.ol_number;

Fig. 2. Query 1 – CH (left) vs. CH2 (right)

select su_suppkey , su_name ,
n_name , i_id , i_name ,
su_address , su_phone ,
su_comment

from item , supplier , stock , nation ,
region ,
(select s_i_id as m_i_id ,

min(s_quantity) as m_s_quantity
from stock , supplier , nation ,

region
where mod((s_w_id * s_i_id) ,10000)

= su_suppkey
and su_nationkey = n_nationkey

and n_regionkey = r_regionkey

and r_name like ’Europ%’
group by s_i_id) m

where i_id = s_i_id
and mod((s_w_id * s_i_id), 10000)

= su_suppkey
and su_nationkey = n_nationkey
and n_regionkey = r_regionkey
and i_data like ’%b’
and r_name like ’Europ%’
and i_id=m_i_id
and s_quantity = m_s_quantity

order by n_name , su_name , i_id

SELECT su.su_suppkey , su.su_name ,
n.n_name , i.i_id , i.i_name ,
su.su_address , su.su_phone ,
su.su_comment

FROM item i, supplier su , stock s,
nation n, region r,
(SELECT s1.s_i_id AS m_i_id ,

MIN(s1.s_quantity) AS m_s_quantity
FROM stock s1 , supplier su1 ,

nation n1, region r1
WHERE s1.s_w_id*s1.s_i_id MOD 10000

= su1.su_suppkey
AND su1.su_nationkey

= n1.n_nationkey
AND n1.n_regionkey

= r1.r_regionkey
AND r1.r_name LIKE ’[RNAME]%’

GROUP BY s1.s_i_id) m
WHERE i.i_id = s.s_i_id

AND s.s_w_id * s.s_i_id MOD 10000
= su.su_suppkey

AND su.su_nationkey = n.n_nationkey
AND n.n_regionkey = r.r_regionkey
AND i.i_data LIKE ’%[IDATA]’
AND r.r_name LIKE ’[RNAME]%’
AND i.i_id=m.m_i_id
AND s.s_quantity = m.m_s_quantity

ORDER BY n.n_name , su.su_name , i.i_id
LIMIT 100;

Fig. 3. Query 2 – CH (left) vs. CH2 (right)

queries are expressed in N1QL (a.k.a. SQL++ [4]), a SQL-like query language
that handles nested data. Note that other potential implementations of CH2 will
necessarily use different languages for their versions of the benchmark due to a
lack of NoSQL query standards.

Figures 2 through 4 show the first three of the 22 CH2 queries (on the right
in each figure) along with the corresponding original relational CH queries (on
the left). The key differences are highlighted. In Query 1 one can see changes
due to the nesting of orderlines within orders as well as the replacement of a
(meaningless) constant date with a TPC-H-inspired parameterized date range.
In Query 2 one can see the replacement of several constants with randomly gen-
erated parameters, again akin to those of TPC-H, as well as the addition of a
LIMIT clause, also akin to that of the corresponding TPC-H query. Query 3 has

70 M. Carey et al.

select ol_o_id , ol_w_id , ol_d_id ,
sum(ol_amount) as revenue ,
o_entry_d

from customer , neworder ,
orders, orderline

where c_state like ’A%’
and c_id = o_c_id
and c_w_id = o_w_id
and c_d_id = o_d_id
and no_w_id = o_w_id
and no_d_id = o_d_id
and no_o_id = o_id
and ol w id = o w id
and ol d id = o d id
and ol o id = o id
and o entry d >

’2007-01-02 00:00:00.000000’
group by ol_o_id , ol_w_id , ol_d_id ,

o_entry_d
order by revenue desc , o_entry_d

SELECT o.o_id , o.o_w_id , o.o_d_id ,
SUM(ol.ol_amount) AS revenue ,

o.o_entry_d
FROM customer c, neworder no,

orders o, o.o orderline ol
WHERE c.c_state LIKE ’[CSTATE]%’

AND c.c_id = o.o_c_id
AND c.c_w_id = o.o_w_id
AND c.c_d_id = o.o_d_id
AND no.no_w_id = o.o_w_id
AND no.no_d_id = o.o_d_id
AND no.no_o_id = o.o_id
-- o and ol are implicitly joined
-- as ol is nested within o

AND o.o entry d < ’[O YEAR]-[O MONTH]’
|| ’-[O DAY] 00:00:00.000000’

GROUP BY o.o_id , o.o_w_id , o.o_d_id ,
o.o_entry_d

ORDER BY revenue DESC , o.o_entry_d
LIMIT 10;

Fig. 4. Query 3 – CH (left) vs. CH2 (right)

similar changes, plus it shows how the order/orderline join from the relational
CH query becomes a simple unnesting (of o.o orderline, where o ranges over
orders) in the FROM clause. In a few queries we also added an additional pred-
icate, inspired by their TPC-H cousins, to better align the two queries’ business
semantics. Similar changes were needed and made for all of the CH SQL queries
in order to arrive at CH2’s 22-query collection.

CH2’s analytical performance is reported, as for CH and TPC-H, in terms of
the geometric mean (“power”) of the response times of the 22 CH2 queries.

4 A First Target: Couchbase Server

To illustrate the utility of CH2, we have tested the HOAP capabilities of Couch-
base Server 7.0, a scalable document database system [3]. With a shared-nothing
architecture, it exposes a fast key-value store with a managed cache for sub-
millisecond data operations, secondary indexing for fast querying, and (as we
will see) two complementary query engines [2] for executing declarative SQL-
like N1QL2 queries.

EventingData Query Indexing
Full-Text
Search

Analytics

Fig. 5. Major couchbase server components

Figure 5 lists Couchbase Server’s major components. Architecturally, the sys-
tem is organized as a set of services that are deployed and managed as a whole

2 N1QL is short for Non-1NF Query Language.

CH2: A Hybrid Operational/Analytical Processing Benchmark for NoSQL 71

Fig. 6. Multi-Dimensional Scaling (MDS)

on a Couchbase Server cluster. Nodes can be added or removed through a rebal-
ance process that redistributes the data across all nodes. This can increase or
decrease the CPU, memory, disk, or network capacity of a cluster. The ability
to dynamically scale the cluster and map services to sets of nodes is referred to
as Multi-Dimensional Scaling (MDS). Figure 6 shows how MDS might enable a
cluster to have 3 nodes for its Data Service, 2 shared by its Index and Full-Text
Search Services, 1 for the Query Service, and 2 for the Analytics Service.

A key aspect of Couchbase Server’s architecture is how data changes are
communicated across services. An internal Database Change Protocol (DCP)
notifies all services of changes to documents managed by the Data Service.

The Data Service lays the foundation for document management. It provides
caching, persistence, and inter-node replication. The document data model is
JSON, and documents live in containers called buckets. A bucket contains related
documents, akin to a database in a relational DBMS. There is no explicitly
defined schema, so the “schema” for documents is based on the application code
and captured in the structure of each stored document. Developers can add new
objects and properties at any time by deploying new application code that stores
new JSON data without having to also make and deploy corresponding changes
to a static schema. As of Couchbase Server 7.0, documents within a bucket reside
in collections (similar to RDBMS tables) that can be grouped together logically
using scopes (similar to RDBMS schemas).

The Indexing, Full-Text Search, and Query Services coordinate via DCP to
provide document database management functionality that supports low-latency
queries and updates for JSON documents. The Indexing Service provides global
secondary indexing for the data managed by the Data Service, and the Full-
Text Search service adds richer text indexing and search. The Query Service ties
this all together by exposing Couchbase Server’s database functionality through
N1QL, a declarative, SQL-based query language that relaxes the rigid 1NF and
strongly-typed schema demands of the relational SQL standard. As of Couchbase
Server 7.0, N1QL supports SQL-style, multi-document, multi-statement trans-
actions using a combination of optimistic and pessimistic concurrency control.
A series of N1QL DML statements can be grouped into an atomic transaction
whose effects span the Query, Indexing, and Data Services.

The Analytics Service complements the Query Service by supporting more
expensive ad-hoc analytical queries (e.g., large joins and aggregations) over
JSON document collections. Figures 7(a) and 7(b) show its role in Couchbase
Server. The Data and Query Services provide low-latency key-value-based and
query-based access to their data. Their design point is operational; they support

72 M. Carey et al.

many users making well-defined, programmatic requests that tend to be small
and inexpensive. In contrast, the Analytics Service focuses on ad hoc and ana-
lytical requests; it has fewer users posing larger, more expensive N1QL queries
against a real-time shadow copy of the same JSON data. The Query service has a
largely point-to-point/RPC-based query execution model; the Analytics Service
employs partitioned parallelism under the hood, using parallel query processing
to bring all of the resources of the Analytics nodes to bear on each query [2].

The Eventing Service provides an Event-Condition-Action based framework
that application developers can use to respond to data changes in real time.

So what about HOAP? As Figs. 7(a) and 7(b) try to indicate, operational
data in Couchbase Server is available for analysis as soon as it is created; analysts
always see fresh application data thanks to DCP. They can immediately pose
questions about operational data, in its natural data model, reducing the time to
insight from days or hours to seconds. There are several differences between this
approach and HTAP in the relational world. One is scale: The Analytics Service
can be scaled out horizontally on a shared-nothing cluster [2], and it can be scaled
independently (Fig. 6). It maintains a real-time shadow copy of operational data
that an enterprise wants to analyze; the copy is because Analytics is deployed
on its own nodes with their own storage to provide performance isolation for the
operational and analytical workloads. Another difference relates to technology:
Couchbase Analytics is not an in-memory solution. It is designed to handle a
large volume of NoSQL documents – documents whose individual value and
access frequency would not warrant the cost of a memory-resident solution, but
whose aggregated content can still be invaluable for decision-making.

(a) HOAP-ful JSON Analytics

(b) Scalable Hybrid Architecture

Fig. 7. Couchbase analytics service in couchbase server

CH2: A Hybrid Operational/Analytical Processing Benchmark for NoSQL 73

5 Benchmark Results

In this section we present preliminary results from implementing and running
CH2 on an AWS cluster running Couchbase Server 7.0.

5.1 Benchmark Implementation

The CH2 data was stored in a scope called ch2 in a bucket called bench in the
Data Service. Data Definition 1.1 shows the N1QL statements for creating the
CH2 benchmark’s collections. The bench bucket was the target for the opera-
tional queries and updates and was indexed to support them. Data Definition
1.2 shows the N1QL statements used to create these indexes. For the analytical
workload, shadow collections were created in the Analytics Service for each of the
aforementioned Data Service collections. Data Definition 1.3 shows the N1QL
statements to create these shadow collections in Analytics. Hybrid performance
trends were the main focus of this exercise, not absolute performance, so little
effort was made to tune the indexing choices or queries. In fact, the Analytics
Service queries were run without any indexing for these initial experiments.

CREATE SCOPE bench.ch2;

CREATE COLLECTION bench.ch2.customer;

CREATE COLLECTION bench.ch2.district;

... (etc.)

Data Definition 1.1. Query Service Collection DDL

CREATE INDEX cu_w_id_d_id_last

ON bench.ch2.customer(c_w_id , c_d_id , c_last) USING GSI;

CREATE INDEX di_id_w_id

ON bench.ch2.district(d_id , d_w_id) USING GSI;

CREATE INDEX no_o_id_d_id_w_id

ON bench.ch2.neworder(no_o_id , no_d_id , no_w_id) USING GSI;

CREATE INDEX or_id_d_id_w_id_c_id

ON bench.ch2.orders(o_id , o_d_id , o_w_id , o_c_id) USING GSI;

CREATE INDEX or_w_id_d_id_c_id

ON bench.ch2.orders(o_w_id , o_d_id , o_c_id) USING GSI;

CREATE INDEX wh_id

ON bench.ch2.warehouse(w_id) USING GSI;

Data Definition 1.2. Query Service Index DDL

ALTER COLLECTION bench.ch2.customer ENABLE ANALYTICS;

ALTER COLLECTION bench.ch2.district ENABLE ANALYTICS;

... (etc.)

Data Definition 1.3. Analytics Service Collection DDL

As mentioned earlier, to drive the benchmark’s mixed workload we started
with the py-tpcc benchmarking package from CMU, the same package recently
used by MongoDB [8], modified its data generator following the earlier descrip-
tion, and added a CH2 driver for Couchbase Server to meet our modified schema

74 M. Carey et al.

and mixed workload requirements.3 Each operational or analytical user is simu-
lated by a thread running on a client node of the cluster under test. Each thread
consistently sends query requests to the system. Up to 128 threads send TPC-C
operations to the Query Service, with 0 or 1 threads sending analytical queries
to the Analytics Service. These thread counts simulate a typical business model
with many front-end users but just a few data analysts (in this case one).

5.2 Benchmark Configuration(s)

Our goal here is to use CH2 to explore several key characteristics of HOAP-ful
platforms for NoSQL, including (1) their effectiveness at providing performance
isolation between the OLTP and OLAP components of a mixed workload, and
(2) the scalability of their architectures when faced with either a need to support
more operational users or a need to perform faster analytics.

To this end, we ran our CH2 benchmark implementation on a cluster con-
sisting of 5–17 nodes that we configured in the AWS cloud. Hardware-wise, the
cluster was comprised of 4–16 m5d.4xlarge instances, each with 16 vCPUs, 64
GB of memory, 2 300 GB NVMe SSDs, and up to 10 Gbps of network bandwidth,
forming the Couchbase Server cluster, plus one m5d.24xlarge instance with 96
vCPUs, 384 GB of memory, 2 900 GB NVMe SSDs, and up to 25 Gbps of net-
work bandwidth that was used to run the client workload driver. The AWS nodes
running a Data, Index, and Query Service combination utilized one of the SSD
drives for data and the other for indexes, while the nodes running the Analytics
Service utilized both drives uniformly for enhanced query parallelism.

We configured Couchbase Server clusters in five different ways, as shown in
Fig. 8. In the first configuration, the 4 Query + 4 Analytics case (4Q+4A), 4
nodes are configured to have the Data Service, Index Service, and Query Ser-
vice, forming the operational subcluster. The other 4 nodes have the Analytics
Service, forming the analytical subcluster. In each subcluster the CH2 data is
hash-partitioned across the subcluster’s nodes. Operational N1QL requests from
the CH2 driver are directed to the Query Service’s API endpoints, while Ana-
lytical N1QL requests are directed to the Analytics Service’s endpoint. In the
second configuration, the 8 Query + 4 Analytics case (8Q+4A), the operational
subcluster is doubled. Symmetrically, in the third cluster configuration, the 4
Query + 8 Analytics case (4Q+8A), the analytical subcluster is instead doubled
relative to its initial size. In the fourth configuration, the 8 Query + 8 Analytics
case (8Q+8A), both subclusters are twice their initial size. Finally, for “extra
credit”, we also included a fifth configuration, the 8 Query + 2 Analytics case
(8Q+2A), to test a configuration that has a scaled-up operational subcluster
paired with a scaled-down analytical subcluster. Note that the Analytics Service
is always given a set of nodes to itself, in all configurations, in order to provide
performance isolation for the operational workload.

Data-wise, the operational data resides in the ch2 scope of the bench bucket
in the Data Service (in JSON document form). For these experiments we gener-

3 The software artifacts associated with this paper’s benchmark can be found at
https://github.com/couchbaselabs/ch2.

CH2: A Hybrid Operational/Analytical Processing Benchmark for NoSQL 75

Fig. 8. Five couchbase cluster configurations

76 M. Carey et al.

ated a 1,000 warehouse instance of CH2. The cardinalities of the CH2 collections
are thus consistent with the example numbers shown earlier in Table 1.

5.3 Initial Benchmark Results

Our initial goal is to explore Couchbase Server’s behavior regarding operational
performance, analytical performance, and performance isolation for CH2’s mixed
workload. We first ran one full loop of the 22 CH2 analytical queries in isola-
tion (i.e., with no operational clients) and measured the time required for each
configuration. Then, for the purely operational CH2 runs (without analytical
clients), we ran the operational workload for this measured duration (rounded
up to the nearest minute). For the mixed workload CH2 runs, the operational
and analytical clients were run concurrently until the client running the 22 CH2
analytical queries completed one full loop.

2827

4976

6709
7571

8054 8281

1486

2881

5045

7115

8137
8547 8835

1471

3000

5553

9381

13566

15224

16306

1462

2979

5407

8971

12697

13982
14798

1359

2582

4753

7832

11419

12720
13342

1494

3028

5544

9560

13631

15148

16255

1462

2940

5310

7515

8524
9000 9278

Transaction Clients

A
0

 N
ew

O
rd

er
 t

p
m

0

5000

10000

15000

20000

25 50 75 100 125

4Q+4A 4Q+8A 8Q+8A 8Q+4A 8Q+2A

8Q+0A 4Q+0A

2746

4715

6577
7549

7997 8273

1475

2866

5044

6944

8002 8371 8727

15869

1442

2888

5197

8709

12192

13732
14625

1442

2732

4884

7965

10859

12141
12892

1494

3028

5544

9560

13631

15148

16255

1462

2940

5310

7515

8524
9000 9278

Transaction Clients

A
1

 N
ew

O
rd

er
 t

p
m

0

5000

10000

15000

20000

25 50 75 100 125

4Q+4A 4Q+8A 8Q+8A 8Q+4A 8Q+2A

8Q+0A 4Q+0A

(a) Tx Clients vs NewOrder tpM (A0) (b) Tx Clients vs NewOrder tpM (A1)

Fig. 9. Tx clients vs. NewOrder tpM, without (A0) and with (A1) analytical queries,
for different cluster configurations

Figure 9 shows the operational CH2 performance, in NewOrder transactions
per minute, as the number of operational client threads is varied from 4 to 128
for the five different cluster configurations. Figure 9(a) shows the performance
results without a concurrent analytical workload – i.e., when zero analytical
query threads are running (A0). Figure 9(b) shows the performance results in
the presence of a concurrent analytical workload – i.e., when there is one ana-
lytical query thread running (A1). In addition, Fig. 9(a) shows results for one
extra cluster configuration, labeled 8Q+0A – a configuration with an 8-node
operational subcluster but no analytical subcluster. Recall that the Analytics
service maintains its own real-time shadow copy of operational data for analy-
sis purposes. In the 8Q+0A configuration, with no Analytics nodes, no shadow
collections are being maintained, while in the five other 8Q (A0) configurations,
with Analytics nodes, shadow collections are being kept up-to-date (via DCP)

CH2: A Hybrid Operational/Analytical Processing Benchmark for NoSQL 77

0.0940.0920.100

0.145

0.262

0.381

0.505

0.0930.0930.101

0.144

0.250

0.364

0.480

0.0930.0890.092
0.105

0.140

0.186

0.233

0.0930.0880.091
0.103

0.141

0.193

0.250

0.0990.1010.101
0.113

0.141

0.191

0.251

0.0920.0890.092 0.103

0.139

0.188

0.235

0.0950.0920.099

0.134

0.237

0.349

0.458

Transaction Clients

A
0

 N
ew

O
rd

er
 A

v
g

.
R

es
p

.
T

im
e

0.000

0.200

0.400

0.600

25 50 75 100 125

4Q+4A 4Q+8A 8Q+8A 8Q+4A 8Q+2A

8Q+0A 4Q+0A

0.0950.095
0.108

0.150

0.265

0.386

0.504

0.0940.0930.102

0.145

0.254

0.373

0.486

0.0940.0900.090
0.103

0.140

0.187

0.238

0.0930.0890.093 0.104

0.142

0.191

0.242

0.0910.0890.092 0.102

0.142

0.196

0.253

0.0920.0890.092
0.103

0.139

0.188

0.235

0.0950.0920.099

0.134

0.237

0.349

0.458

Transaction Clients

A
1

 N
ew

O
rd

er
 A

v
g

.
R

es
p

.
T

im
e

0.000

0.200

0.400

0.600

25 50 75 100 125

4Q+4A 4Q+8A 8Q+8A 8Q+4A 8Q+2A

8Q+0A 4Q+0A

(a) Tx Clients vs NewOrder RT (A0) (b) Tx Clients vs NewOrder RT (A1)

Fig. 10. Tx clients vs. NewOrder response time, without (A0) and with (A1) analytical
queries, for different cluster configurations

in real-time even though there are no concurrent analytical queries making use
of them. Figures 10(a) and (b) show the response time results for NewOrder
transactions corresponding to Fig. 9’s throughput results.

There is a great deal of information packed into Fig. 9, so let us proceed to
unpack it and see what we can glean from the results shown there. First of all,
for all configurations, with or without concurrent analytical queries, we can see
that the system delivers textbook performance – i.e., the curve shapes are as
expected for throughput under a closed workload, first increasing linearly and
then reaching a plateau when the system’s resources are saturated – so the system
is well-behaved and exhibits no thrashing. A second observation is that if we
compare the system’s A0 vs. A1 throughputs in Figs. 9(a) and (b), we see effective

performance isolation. The throughput trends and levels achieved for a given
configuration in Fig. 9(b), where the CH2 analytical query workload is constantly
running, are only slightly less those in Fig. 9(a) where there are no concurrent
queries. These observations are borne out by the response time results in Fig. 10
as well. The response times are initially flat and then slowly become linearly
proportional to the client thread count once the system becomes saturated –
textbook behavior – and the corresponding response times in Figs. 9(a) and (b)
are essentially pairwise identical.

Continuing with our analysis, let us now examine the throughput results
(Figs. 9(a) and (b)) within a given operational subcluster size (Q) but with dif-
ferent analytical subcluster sizes (A). Let us first look at the 4Q subcluster
configurations, 4Q+4A and 4Q+8A. What we see is that their operational per-
formance is essentially the same, i.e., the system’s 4Q operational performance
is unaffected by the analytical subcluster size, so feeding the real-time opera-
tional updates to the analytical subcluster is not a problem here. Next let us
look at the 8Q subcluster configurations. There we see that the performance
for 8A+0A and 8Q+8A are also identical to one another, so having an 8-node

78 M. Carey et al.

analytical subcluster to feed does not place a burden on the 8Q operational
performance. In addition, we see that the throughput delivered by these two
8Q configurations is twice the throughput of the 4Q configurations – i.e., the
system appears capable of delivering linear transactional scaleup – so if you
require twice the operational throughput, and you double your investment in
hardware, your requirement can be met. However, if we turn now to the 8Q+4A
and 8Q+2A results, we do observe some throughput degradation on the 8Q
operational side when the analytical subcluster is “undersized” in comparison.
Mysteriously, however, if we examine the response time results in Fig. 10, we
do not observe this same effect – i.e., we do not see a noteworthy degradation
in the NewOrder response times due to smaller analytical subclusters. Thus, if
you need your operational response times to be twice as fast, you can double
your investment in operational subcluster hardware to meet your performance
requirement.4

36.2
38.19

40.16 41.49 41.09 41.28 41

17.9919.3120.61 20.78 21.15 21.02 20.67

17.7819
21.14 21.02 21.04 21.22 21.14

36.7
39.48

41.86 42.3 42.54 42.63 43.97

75.14
79.05

83.8
85.8

87.74 88.24 89.27

Transaction Clients

C
H

2
 Q

u
er

ie
s

G
eo

.
M

ea
n

 (
se

c.
)

0

25

50

75

100

25 50 75 100 125

4Q+4A 4Q+8A 8Q+8A 8Q+4A 8Q+2A

Fig. 11. Tx clients vs. power (geometric mean of analytical query times)

Let us now turn our attention to what the CH2 benchmark can reveal about
Couchbase Server’s analytical query performance. Figure 11 shows the geomet-
ric mean of the 22 queries’ average response times (query power) for the five
different cluster configurations versus the number of operational client threads.
There are two key take-aways that are evident in this figure. First, we see the
flip side of Couchbase Server’s largely successful delivery of operational perfor-
mance isolation (HOAP) – the analytical workload’s performance is not overly
affected as the number of concurrent operational client threads is increased on the

4 The reason why we see some NewOrder throughput impact for the smaller 8Q config-
urations, but apparently without a corresponding NewOrder response time impact,
is currently a bit of a performance mystery that running CH2 has revealed. We have
several theories and we are currently investigating this behavior in order to further
enhance Couchbase Server’s performance isolation and scaling characteristics.

CH2: A Hybrid Operational/Analytical Processing Benchmark for NoSQL 79

x-axis. Queries initially slow down somewhat as the operational subcluster begins
generating more updates to be ingested, i.e., as the number of clients grows,
because ingestion “steals” some of the analytical subcluster’s query processing
capacity, but query performance then levels out and is unaffected once the oper-
ational subcluster is saturated. Second, we see the very successful delivery of
linear query speedup – i.e., when the number of nodes given to the Analytics
service is doubled, the CH2 query execution times are essentially cut in half.
Thus, to have your analytical queries run twice as fast, you can simply double
your investment in the analytical subcluster’s hardware.

6 Conclusion

Systems that provide hybrid workload support (i.e., HTAP or HOAP) first arose
in the relational world, where they are often linked to server technology trends
such as columnar storage and memory-rich, many-core, scale-up servers. Our
focus here is on hybrid NoSQL platforms. We introduced CH2, a benchmark
for evaluating hybrid platforms in the document database world. Like CH, its
inspiration, the CH2 benchmark borrows from and extends both TPC-C and
TPC-H. Differences from CH include a document-oriented schema, a data gen-
eration scheme that provides a TPC-H-like history for meaningful analytics, and
a “do over” of the CH queries that is more aligned with TPC-H. We detailed the
shortcomings that we found in CH, described the design of CH2, and shared pre-
liminary results from running CH2 against Couchbase Server 7.0. These initial
results provide insight into the performance isolation and horizontal scalabil-
ity of Couchbase Server 7.0 as well as showing the value of CH2 for evaluating
HOAP-ful NoSQL platforms.

Acknowledgments. The authors wish to thank the Couchbase Query Service team,
especially Sitaram Vemulapalli and Kamini Jagtiani, for assisting us with the new 7.0
N1QL transaction support, and Michael Blow and Ian Maxon from the Couchbase
Analytics Service team, for invaluable assistance in setting up the AWS clusters used
for the experiments.

References

1. 451 Research: Hybrid processing enables new use cases (business impact brief)
(2018). https://www.intersystems.com/isc-resources/wp-content/uploads/sites/
24/Hybrid Processing Enables New Use Cases-451Research.pdf. Accessed 19 Oct
2020

2. Al Hubail, M., et al.: Couchbase analytics: NoETL for scalable NoSQL data anal-
ysis. PVLDB 12(12), 2275–2286 (2019)

3. Borkar, D., et al.: Have your data and query it too: from key-value caching to big
data management. In: Proceedings of ACM SIGMOD Conference, pp. 239–251.
ACM (2016)

4. Chamberlin, D.: SQL++ for SQL Users: A Tutorial. Couchbase, Inc. (2018).
Amazon.com

80 M. Carey et al.

5. Cole, R.L., et al.: The mixed workload CH-benCHmark. In: Proceedings of Fourth
International Workshop on Testing Database Systems, DBTest 2011, Athens,
Greece, 13 June 2011, p. 8. ACM (2011)

6. Cooper, B.F., et al.: Benchmarking cloud serving systems with YCSB. In: Pro-
ceedings of 1st ACM Symposium on Cloud Computing, SoCC 2010, Indianapolis,
Indiana, USA, 10–11 June 2010, pp. 143–154. ACM (2010)

7. Gray, J. (ed.): The Benchmark Handbook for Database and Transaction Systems,
1st edn. Morgan Kaufmann, Burlington (1991)

8. Kamsky, A.: Adapting TPC-C benchmark to measure performance of multi-
document transactions in MongoDB. PVLDB 12(12), 2254–2262 (2019)

9. Kemper, A., Neumann, T.: HyPer: a hybrid OLTP&OLAP main memory database
system based on virtual memory snapshots. In: 2011 IEEE 27th International Con-
ference on Data Engineering, pp. 195–206 (2011)

10. Lahiri, T., et al.: Oracle database in-memory: a dual format in-memory database.
In: 2015 IEEE 31st International Conference on Data Engineering, pp. 1253–1258
(2015)

11. Larson, P., et al.: Real-time analytical processing with SQL server. PVLDB 8(12),
1740–1751 (2015)

12. May, N., Böhm, A., Lehner, W.: SAP HANA - the evolution of an in-memory
DBMS from pure OLAP processing towards mixed workloads. In: Proceedings of
BTW 2017, 17. Fachtagung des GI-Fachber. DBIS, März 2017, Stuttgart, Germany
(2017)

13. Özsu, M.T., Valduriez, P.: Principles of Distributed Database Systems, 4th edn.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-26253-2

14. Pirzadeh, P., Carey, M., Westmann, T.: BigFUN: a performance study of big data
management system functionality. In: 2015 IEEE International Conference on Big
Data, pp. 507–514 (2015)

15. Pirzadeh, P., Carey, M., Westmann, T.: A performance study of big data analytics
platforms. In: 2017 IEEE International Conference on Big Data, pp. 2911–2920
(2017)

16. Pöss, M., Floyd, C.: New TPC benchmarks for decision support and web commerce.
SIGMOD Rec. 29(4), 64–71 (2000)

17. Pöss, M., et al.: TPC-DS, taking decision support benchmarking to the next level.
In: Proceedings of ACM SIGMOD Conference, pp. 582–587. ACM (2002)

18. Raab, F.: TPC-C - the standard benchmark for online transaction processing
(OLTP). In: Gray, J. (ed.) The Benchmark Handbook for Database and Trans-
action Systems, 2nd edn. Morgan Kaufmann (1993)

19. Raman, V., et al.: DB2 with BLU acceleration: so much more than just a column
store. PVLDB 6(11), 1080–1091 (2013)

20. Raza, A., et al.: Adaptive HTAP through elastic resource scheduling. In: Proceed-
ings of ACM SIGMOD Conference, pp. 2043–2054. ACM (2020)

21. Sadalage, P.J., Fowler, M.: NoSQL Distilled: A Brief Guide to the Emerging World
of Polyglot Persistence. Addison-Wesley, Upper Saddle River (2013)

22. Shasha, D.E.: Database Tuning - A Principled Approach. Prentice-Hall, Hoboken
(1992)

23. Tian, Y., Carey, M., Maxon, I.: Benchmarking HOAP for scalable document data
management: a first step. In: 2020 IEEE International Conference on Big Data,
pp. 2833–2842 (2020)

24. Wikipedia contributors: Hybrid transactional/analytical processing – Wikipedia,
the free encyclopedia (2020). https://en.wikipedia.org/w/index.php?title=Hybrid
transactional/analytical processing&oldid=981969658. Accessed 19 Oct 2020

